
Overview of the DOM Surface Software

- D R A F T -

John Jacobsen

Lawrence Berkeley National Laboratory
jacobsen@rust.lbl.gov

Last updated April 9, 2001

Abstract

In 2000, a set of forty Digital Optical Modules (DOMs) were deployed at the South Pole. The purpose of these devices is to sense faint light signals from muon and neutrino radiation in deep Antarctic ice. In order to build, test and operate the DOMs, a suite of applications was developed using the Perl language. The applications rely on a multi-layered, object-oriented communications Application Program Interface (API), also written in Perl. This document describes these applications and the API. It includes instructions for their installation and use, as well as explanations about how they work.

Note: This document is a work in progress. Some sections are missing or incomplete.

Table of Contents

2Introduction

Overview of Digital String Components
2
DOM Surface Software: Motivation and Philosophy
3
Organization of the Software
4
Getting and Installing the Software
4
Using the Applications
5
Interacting with the DOM Boot program using domtalk
5
Interacting with the DOM Application using domtest
8
Controlling DOM High Voltages with domhv
8
Automated Data Taking with DOMLogger
8
The DOM Communications Protocol
8
The Communications API
8
Detailed Descriptions of the Layers of the Communications API
9
The Functional Layer (DOMSet)
9
The Messaging Layer (DOMMsg)
11
The Packet Layer (DOMPacket)
11
The Serial Communications Layer (GenericDOMSerial)
12

Introduction

This document describes software for communicating with and controlling the string of Digital Optical Modules (DOMs) deployed at the South Pole in January of 2000. The DOMs are custom-built optical sensors with fast digitizing electronics, memory, and a controlling CPU, whose purpose is the detection of faint light signals from charged particles travelling through transparent materials (e.g., water or ice).

The programs described here together comprise the control software for the DOMs. The software provides the interface which most people will use in order to operate, diagnose and collect data from the DOMs. Written entirely in Perl, the software includes a layered Application Program Interface (API) for communications, and four applications which use the API. A separate package of embedded software which runs on the CPU in the DOM itself will be described elsewhere.

The subject of time calibration and other functions controlled by the Test DAQ is currently covered in Control of the LBNL Digital Optical Module Test Boards Using a PC-104 Single-Board Computer, by J. Jacobsen. Eventually, that document should be absorbed into this one.
The primary application programs to be documented here are:

domtest
The main program for testing and configuring the DOMs.

domtalk
A program for controlling DOMs in “boot mode.”

domlogger
A program for ongoing data collection from the DOMs

domhv
A program for monitoring, setting and deactivating high voltage on the DOMs.

The API used by these programs to access and control the DOMs will also be described.

Overview of Digital String Components

Before launching into the use, care and feeding of the applications making up the DOM surface software, it is instructive to review the various hardware elements at play. The current setup for controlling the DOMs is somewhat complicated. It has several variants, so we will focus on the setup consisting of four DOMs connected to the 2001 LBNL Test DAQ (one alternate variant substitutes the data acquisition electronics created at DESY for the LBNL Test DAQ).

As far as the hardware setup is concerned, the following elements are involved (see Figure 1):

1) The DOMs.

2) The Test DAQ, consisting of a PC-104 CPU and four “test boards” with analog front-end electronics and a controlling FPGA. The PC-104 CPU “talks” to the test boards over a C-104 (ISA) bus. Each test board talks to a single DOM.

3) A network-to-serial-port terminal server. Four ports are dedicated to DOM/test board pairs.

4) A Linux PC (typically rust.lbl.gov or fireball.spole.gov) which runs the applications which access and control the DOMs.

5) A GPS clock which sends timing signals to the PC-104 CPU.

These hardware elements are connected via several communications channels:

1) Four network sockets from the Linux PC to the terminal server. These carry commands (“DOM Messages”) destined for the four DOMs, and the response data from the DOMs.

2) Four RS-232 serial connections connecting the terminal server to the test boards.

3) Four twisted pair cables carrying signals from the test boards to the DOMs.

4) One network socket from the Linux PC to the PC-104 CPU in the Test DAQ. This socket carries commands to syncserver running on the PC-104, and the response data for each command.

5) One RS-232 serial cable connecting the GPS clock to the PC-104 system. The GPS clock sends an ASCII string with the UTC time to the PC-104 system, once per second. Syncserver reports this time in the response data for certain commands, sent over the network socket to the controlling Linux PC.

The diagram in Figure 1 illustrates these relationships:

Figure 1 - Digital String Components with Communications Channels Illustrated

DOM Surface Software: Motivation and Philosophy

The basic task of the software described here is to enable communication with the DOMs. At the beginning, we simply needed for a user to be able to sit at a Windows or Linux workstation hooked directly to a DOM circuit board, to give commands to the DOM boot program and to see the result. Free, publicly-available software such as TeraTerm was adequate at first, but we soon needed extra capability such as the ability to upload files with cyclic-redundancy checks (CRC) and more detailed debugging of the communications functionality. The program domtalk was written to address these requirements. Meanwhile, a more sophisticated application (domtest) was also needed which would communicate with the application embedded in the DOM using a packet-based messaging protocol. Finally, it was anticipated that additional programs would be needed to automatically control the DOMs and collect data. The program domlogger does this. Since it was recognized from the beginning that multiple programs would need to communicate with and control the DOMs in well-defined ways, communications and control tasks were grouped together in an API. The programs and the API grew as hardware and firmware functionality improved.

The choice of Perl, a scripting language with associations to Web site development and system administration, might seem a curious one. However, Perl can be a very powerful tool for the quick construction of prototype systems. It is fully object-oriented and benefits from a huge user community, as well an extensive library of modules for networking and myriad other tasks. Development time for projects carried out in Perl tends to be significantly shorter than for other OO languages like C++. While somewhat “high-level” when compared to languages like C, it has functions for directly accessing data structures down to the level of individual bits (a crucial capability for the DOM software). Perl code executes surprisingly fast in most circumstances, and can incorporate separately compiled, C-language modules. In our case, speed was always constrained by network and communications bottlenecks, not by CPU time.

In the case of the DOM software, the original motivation for using Perl was to get something working as quickly as possible, but the language proved to be a flexible and robust enough basis on which to build a complete system. The development of the surface software took place in parallel with the hardware production, testing and debugging, with only minimal programming effort. It was possible to make additions to the software very quickly to test new hardware functions as soon as they became available.

All the programs described in this document are text-based rather than GUI-based. This was a conscious choice based on the realities of low bandwidth communications to and from the South Pole.

The software was developed and maintained in a Concurrent Versions System (CVS) archive at LBNL, with mirrors at the South Pole. This facilitated software installation at the remote site and reduced version conflicts between different copies of the software.

Organization of the Software

The DOM surface software consists of four applications - domtalk, domtest, domlogger and domhv. These all use the communications API, which encapsulate the various functions of the DOMs and the means of accessing them through the terminal servers. The layers of the API are as follows:

1) DOMSet - The Functional Layer. A DOMSet object represents the functions of a collection of DOMs. Applications use the methods of DOMSet to instruct the DOM to perform high level tasks, and report any resulting error conditions. For example, the function SingleADCRead causes a message to be sent to the DOM requesting the value of a particular ADC channel on a particular DOM.

2) DOMMsg - The Messaging Layer. A DOMMsg object implements the messaging protocol using the exchange of packets between the surface and the DOM.

3) DOMPacket - The Packet Layer. Implements the sending and receiving of serial data in packet form.

4) GenericDOMSerial - The Serial Communications Layer. Implements the sending and receiving of raw data over a serial connection. Has support for Linux (LinuxDOMSerial.pm) and Windows NT (Win32DOMSerial.pm, now deprecated).

Each of these layers is implemented by means of a Perl package which describes an object (e.g., a DOMPacket object) with several methods (e.g., send() and receive()).

The specifics of each layer will be described in more detail in Section XXX.

Getting and Installing the Software

The DOM software resides in a CVS repository on Rust.lbl.gov. Currently, one needs a login shell account on Rust in order to get the software. If you have such an account, and are logged into Rust, the command “cvs -d /usr/local/cvsroot checkout domsoft” will copy the repository into your current directory.

On a remote machine (at the South Pole, for example), you’ll need:

setenv CVS_RSH ssh

cvs -d username@rust.lbl.gov:/usr/local/cvsroot checkout domsoft

Substitute your username on Rust for username. You’ll have to give your Rust password to get the files.

Once you have the repository copied to your directory, you can begin to look at the Perl code. All the necessary code is in the directories domsoft/src/domio and domsoft/src/portio. Portio contains code used to interface with the PC-104 computer in the Test DAQ; portio contains all the other software. The CVS repository also contains some assorted documentation, as well as source code for the DOM Boot software. It does not contain the source code to the DOM application.

The DOM surface software has a “release” location on both Rust and on Fireball.spole.gov (the machine currently used to control the DOMs). The location of the files is /usr/local/dom/bin and /usr/local/dom/lib. The former must be in your PATH variable in order to use the release version of the code (edit $HOME/.login or $HOME/.cshrc). If you just want to use the “release” code and your path is set up correctly, then typing domtest, domlogger, domtalk or domhv at the command prompt will start the appropriate program.

The script domsoft/src/domio/install_domtest.pl will copy all the files in your domio directory into the release directories. DO NOT DO THIS unless you know what you’re doing. This means you if you’re just looking at this manual for the first time!

Once you are comfortable making changes to the software (and, more importantly, other people working on the DOMs are comfortable with you making changes…), you can use normal CVS commands to bring the repository up to date with your modifications. See the CVS manual (http://www.cvshome.org/docs/manual/) for instructions about how to do this.

The software is already installed on Rust and on Fireball. See the author (Jacobsen) or Azriel Goldschmidt (AGoldschmidt@lbl.gov) if you have additional questions.

Using the Applications

As mentioned above, the DOM control applications are currently all text-based programs that can be used from any real or virtual terminal connected to the Linux control PC (e.g., rust or fireball). You need to have the directory /usr/local/dom/bin in your path. Starting one of the applications is then simply a matter of typing its name at the shell prompt. You can also run the application directly out of your copy of the domsoft CVS repository.

Interacting with the DOM Boot program using domtalk
We start with an explanation of the two modes of DOM operation - “boot mode” and “application mode.” In boot mode, plain text commands are give to the DOM Boot program (“domboot”). One can, for example, list the current files in the flash file system, read out ADC values, or tell the DOM to boot an application, at which time the DOM will be in “application mode.” In application mode, one can no longer communicate using plain text, but must rather use the messaging protocol (explained in detail below). The messaging protocol was developed to allow for reliable communications at high speed using a well-defined data structure that could be “spoken” by either the DOM’s FPGA (in the case of trigger data) or CPU (in the case of slow control information).

When a DOM is in application mode, one can get back to the DOM’s boot mode by power-cycling the DOM, or by issuing the “reboot” command to the DOM’s embedded application using domtest.

Domtalk was the first of the four surface applications to be written, and is still the simplest. It allows you to communicate with the DOM in boot mode. Using domtalk, you interact with the DOM by sending it simple, single character commands, and seeing the result. For those reading this manual who can remember manually dialing a modem using a terminal program, the process is similar.

To run domtalk, type “domtalk” at the command line. You will be asked for the name of a terminal server and a port number. The default terminal server is at the South Pole; the default port is 3001, which corresponds to port 1 on the terminal server. As a shortcut, you can type “domtalk terminal_server port” on the command line, with terminal_server a valid terminal server and port a number between 3001 and 3032.

You may have to type return to see the boot prompt from the DOM.

With one exception, the keystrokes you type while running domtalk are sent to the DOM boot program. The exception is the escape sequence “Control-]”. The escape sequence gives you a series of options:

c: Continue s: Send file b: Change baud rate q: Quit

B: Boot DOM Application

With the next keystroke, you can tell domtalk what you want to do. The “Send file” option is used when sending a flash file to the DOM - do not do this unless you have instructed the DOM Boot program to accept a file! Otherwise you run the risk of having the DOM interpret the file you send as a sequence of commands which can have bad side effects such as the loss of data in the DOM flash file system. When you select “send file,” you can use tab-completion to list and complete file names, much like in newer Unix shells like tcsh.

The other options are more or less self-explanatory.

This is not a manual for the DOM Boot program, and there currently is none, but most of the commands you will encounter while interacting with the DOMs using domtalk are self-explanatory. Also, see the example, below.

Troubleshooting: if you start domtalk and can’t seem to get a prompt from the DOM Boot program, make sure that:

a) the DOM is powered on (80 V), and is drawing current (~ 29 mA). You may have to reboot the DOM if it is already booted fully into the application (domtalk won’t work with a DOM running its application);

b) you’re talking to the right terminal server and port address

c) if using a test board to communicate with the DOM, the test board FPGA is loaded successfully (see the document Control of the LBNL Digital Optical Module Test Boards Using a PC-104 Single-Board Computer).
Example: Loading a New FPGA Design on a DOM

In this example, we load an FPGA design file into the flash file system of the DOM. We assume we have prepared an FPGA design file prepared with a .fl extension (flash header bytes added using makeflash.pl). We further assume the DOM is on the first terminal server port of a terminal server termserv.lbl.gov.

First we connect with the DOM by firing up domtalk on rust.lbl.gov. In all the examples, text in bold is typed by the user; non-bold text is output from the program. <CR> means return is pressed:

$$ domtalk domtest.lbl.gov 3001

Welcome to /usr/bin/domtalk V0.2, by John Jacobsen / LBNL.

Trying to create socket ...OK.

Trying to talk to board domtest.lbl.gov:3001... press <return> to wake up DOM.

<CR>

Domboot 1.16 DOM 16 Enter command (? for menu):

It is assumed that the DOM is already in boot mode or power-cycled just before return is pressed, above.

We now list the contents of the flash file system using the “l” command:

Domboot 1.16 DOM 16 Enter command (? for menu): l

Filename: dom_hv_intg_application

File ID: 4

Major Version: 0

Minor Version: 0

File Type: Application

Numb. Sectors: 2

Start Offset: 0x00020080

File Size: 240684 (0x0003ac2c)

Filename: dom_test6

File ID: 4

Major Version: 0

Minor Version: 0

File Type: FPGA design

Numb. Sectors: 1

Start Offset: 0x00060080

File Size: 45705 (0x0000b289)

Now we upload the FPGA file:

Domboot 1.16 DOM 16 Enter command (? for menu): u
Enter name of file you will upload:

dom_fpga_test

Enter the file ID, major version, minor version:

0 0 0

Enter the file type (0 = unknown, 1 = FPGA design, 2 = routine, 3 = application):

1

Send the flash file...

c: Continue s: Send file b: Change baud rate q: Quit

B: Boot DOM Application

s

Type the name of the file you want. (Use the TAB key

for file completion / directory listings) : dom_fpga_test<TAB>
Unique match: ./dom_fpga_test.fl

./dom_fpga_test.fl<CR>

Sending file ./dom_fpga_test.fl now (61735 bytes)...

Done sending file!

c: Continue s: Send file b: Change baud rate q: Quit

B: Boot DOM Application

c

Continuing... press RETURN to get DOM prompt....

Sent = 0x5c50dd64 -- Calculated = 0x5c50dd64

Sent = 0xebfd2ab6 -- Calculated = 0xebfd2ab6

Sent = 0x571bbd85 -- Calculated = 0x571bbd85

…. (checksums omitted) ….

Sent = 0x361010a6 -- Calculated = 0x361010a6

Sent = 0x3873a835 -- Calculated = 0x3873a835

Done. Wrote 61483 bytes, reached memory location 1018f0ab.

61483 bytes were loaded.

Now the FPGA design file must be loaded from the DOMs RAM into the flash file system. The “f” command does this:

Domboot 1.16 DOM 16 Enter command (? for menu): f
Blowing RAM image into flash...

Sector mask = 0xffffc80f...

First sector used for the new file will be sector 11

Flash ID = 00010001 22492249 00000000

Done programming RAM buffer into flash.

The “l” command can now be used again to verify that the image has been added to the flash file system. This is left as an exercise to the reader.

Interacting with the DOM Application using domtest
As of this writing, domtest is the program used most for interacting with the DOMs. It runs in an interactive fashion, by presenting a series of text-based menus with which the user specifies commands to be issued to the application sitting in the DOM. When the user selects a particular action, domtest sends one or more messages to the application using the communications API outlined below. For each message, a response is received and the results presented to the user.

Domtest also is used to set up the DOM configuration database, associating DOM IDs with high voltage values, terminal server addresses, and test board IDs.

Much more about domtest will follow in future versions of this document.

Controlling DOM High Voltages with domhv

… More information to appear here soon….

Automated Data Taking with DOMLogger

… More information to appear here soon….

The DOM Communications Protocol

Section on the communications protocol developed by Chuck and Karl-Heinz. … More information to appear here soon….

The Communications API

The Perl applications for communicating with and controlling the DOMs make use of a set of communications layers. Generally speaking, each layer is implemented by an object (Perl package). Each object makes use of the layer directly below it. For example, the messaging object (DOMMsg) makes use of a packet object (DOMPacket) to send and receive chunks of a message.

All the source code lives in the domsoft/src/domio directory on CVS. The code is written to work on a host PC running either Windows NT or Linux. All platform dependencies are taken care of at the low-level, generic serial layer.

Heirarchy of communications layers/object classes:

Functional Layer (DOMSet)

Messaging Layer (DOMMsg)

Packet Layer (DOMPacket)

GenericDOMSerial layer - Linux or
Windows NT

Physical Hardware talking to the DOM: Serial ports, terminal servers

Detailed Descriptions of the Layers of the Communications API

The Functional Layer (DOMSet)

The functional layer implements all functions for interacting with a set of DOMs. Uses DOMMsg objects to talk to the DOMs.

Class Methods

PRIVATE
Function Name
Arguments

(scalar, unless otherwise noted)
Return Values

(scalar, unless otherwise noted)
Purpose

new
1) Mode: "tty" or "termserv"

2) a reference to a hash of the form given for R_PORT_HASH (see Fields, below).
1) new object reference

2) error string, if object ref. undefined
Constructor of a DOMSet object

incrementMessageID
the DOM's ID number
Incremented message ID
Increments the ID of DOM

getMessageID
the DOM's ID number
the current message ID
Gets current message ID

SingleDACRead
1) The DOM's ID number

2) the channel of the DAC to read
1) DAC value

2) the error string, if DAC val. Undefined
Reads the last value written to the DAC channel

SingleDACWrite
1) the DOM's ID number

2) the channel to write to

3) the value in DAC units to write
1) Boolean success value

2) Error string, if failure
Write a value to a single DAC channel

SingleADCStream
1) DOM ID

2) Channel ID

3) Time delay in msec between samples
1) Number of samples

2) Error string, if num. samples undefined

3) Array of ADC values
Read an ADC channel multiple times

SingleADCRead
1) DOM ID

2) Channel ID
1) ADC value

2) Error string, if ADC value undefined
Read an ADC value once

SetHVLimit
1) DOM ID

2) Max anode value (DAC units)

3) Max dynode value (DAC units)
Error string; "ok" if success
Set the maximum allowed anode and dynode voltages

GetHVLimit
DOM ID
1) Current max anode value (DAC units)

2) Current max dynode value (DAC units)
Fetches the max. allowed anode and dynode voltages

InitiateEnableHVRequest
DOM ID
1) Challenge value

2) Error string, if challenge value undefined
Enables the setting of HV (requires subsequent call to VerifyEnableHV).

USE WITH CARE.

VerifyEnableHV
1) DOM ID

2) Challenge value plus offset
Error string; "ok" if success
Verifies the request to enable HV

USE WITH CARE.

InitiateSetHVRequest
1) DOM ID

2) Anode HV (DAC units)

3) Dynode HV (DAC units)
1) Challenge value

2) Error string, if challenge value undefined
Initiates a request to set the high voltage on a DOM (must be successfully enabled using InitiateEnableHVRequest and VerifyEnableHV; requires subsequent call to VerifySetHV).

USE WITH CARE.

VerifySetHV
1) DOM ID

2) Anode HV (DAC units)

3) Dynode HV (DAC units)

4) Challenge Value plus offset
Error string; "ok" if success
Verify challenge value and completes the request to set high voltage.

USE WITH CARE.

DisableHV
DOM ID
Error string; "ok" if success
Disable high-voltage on the DOM.

TrigDiscriminatorTest
1) DOM ID

2) Direction ("up" or "down")

3) Channel ("spe", "mpe", "spebar", "mpebar")
1) Error string; "ok" if success

2) Array of values from the test
Test reads the output of the discriminator for either single or multi photo electron channel.

TrigDiscriminatorRateTest
1) DOM ID

2) Channel ("spe", "mpe", "spebar", "mpebar")
1) Number of discriminator firings

2) Error string; "ok" if success
Read out the result of an FPGA test of the trigger discriminator. Must set the appropriate SPE or MPE discriminator DAC first.

ComDiscriminatorTest
1) DOM ID

2) Direction ("up" or "down")

3) Channel (0 .. 3)
1) Error string; "ok" if success

2) Array of values from the test
Causes the application to histogram the Com. discriminator output as a function of varying input voltage.

LocalCoinTest
DOM ID
1) Result from test: single byte pattern from FPGA test program, or undef if test fails

2) Error string; "ok" if success
Method causes FPGA test program to test local coincidence circuitry

StartWaveformTest
1) DOM ID

2) Test Type : pick numeric test type from SymbolTrans.pm (currently, ranges from 0 to 30)

3) Poll Delay (msec)

4) Repetition count
Error String: "ok" if success
Begin a test of the ATWD or slow ADC, compiling statistics bin-by-bin for a number of iterations or triggers

StopWaveformTest
DOM ID

NOT YET IMPLEMENTED

GetWaveformTestStatus
DOM ID
1) Error string : "ok" if success

2) Numerical test id (corresponds to "test type" in StartWaveformTest)

3) Current state ("idle", "testing", "done" or "error")

4) Repetition count: how many tests have been performed so far
Check on the status of an already-running test

GetWaveformTestData
DOM ID
1) Error string: "ok" if success

2) Numeric test id

3) Poll Delay (msec) given at start

4) Repetition count

5) Number of Bins

6) Four references to arrays of the length given by "Number of Bins": Minimum values, maximum values, sum of values, sum of squares of values
Fetches waveform test data in the default format (E.g. tests such as "TT_ATWD0_CH0_HIST")

GetSpectrumTestData
DOM ID
1) Error string: "ok" if success

2) Numeric test id

3) Poll Delay (msec) given at start

4) Repetition count

5) Number of Bins

6) Reference to array of the length given by "Number of Bins" containing spectrum for the desired channel
Fetches channel spectrum data for tests such as "TT_ATWD0_CH0_INTEGRAL_HIST"

PerformEchoBackTest
1) DOM ID

2) Scalar data to send and receive
Error string : "ok" if success
Sends data down the hole and sees if it comes back intact

GetFPGAStatus
DOM ID
1) Error string: "ok" if success

2) "loaded" or "unloaded"

3) Major version ID

4) Minor version ID

5) Board ID

6) FPGA ID

7) FPGA filename
Gets status of FPGA. If "unloaded", version IDs and filename are undefined

ListFPGAFiles
DOM ID
1) Error string: "ok" if success

2) Array with names of files
Sends a sequence of DSC_FPGA_LIST_FILES messages to generate the list of current FPGA files which are programmed into the flash

LoadFPGAFile
1) DOM ID

2) File name
Error string: "ok" if success
Load the named file into the FPGA

UnloadFPGAFile
DOM ID
Error string: "ok" if success
Unload whatever is in the FPGA

SetTimeTickParams
1) DOM ID

2) Value of Time Tick Byte
Error string: "ok" if success
Set the bits of the FPGA register responsible for configuring time ticks (see Jerry's DOM FPGA API document)

GetTimeTickInfo
DOM ID
1) Error string: "ok" if success

2) lower 4-byte longword of time in DOM when time pulse was captured

3) upper longword of same

4) longword PMT trigger capture time

5) longword time of transmission to surface

6) pretrigger depth read from DOM FPGA

7) value of time tick parameter register at last write via slow control
Get various pieces of information about time ticks sent from and received by DOM

Class Data for DOMSet objects

R_PORT_HASH : Reference to table of IDs / Port names in the form

{ 1 = "domtest.lbl.gov:80",
 2 = "termserv32.spole.gov:81" }
where the first scalar is the OM ID and the second is either IP address:IP port or serial device file name.
 R_MSG_HASH : Reference to table of DOMMsg objects

The Messaging Layer (DOMMsg)

The DOMMsg layer implements the DOM Message Passing protocol, using a DOMPacket object.

Fields

· PORT : DOMPacket object

· MSG_ERROR : String

Methods

· new ($mode, $port)

· msgError : query last message error type

· type

· subtype

· msgID

· msgStatus

· msgStatusSeverity

· msgErrorLogging

· dataRef

· dataLen

· DOMid

· sync

· send

· recv

The Packet Layer (DOMPacket)

Implements the 8+1 byte DOM packet protocol (documented elsewhere?), using a GenericDOMSerial object.

Fields

· serialObject : GenericDomSerial object

· PACKET_ERROR : Packet error type

· timeoutSeconds

Methods

· new

· packetError : query last packet error type

· outputPkt($pkt) : output packet $pkt over the serialObject

· inputPkt : reads (and modifies) packet from the serialObject; returns undef if troubles ensue.

The Serial Communications Layer (GenericDOMSerial)

This is the lowest level object handles input and output over a serial connection. Functionality includes local serial port access or access to the serial lines of a terminal server, via TCP/IP (currently Linux only). To handle the connection in a system-independent way, the methods of the class are implemented with either Win32DOMSerial (Windows NT code) or LinuxDOMSerial (Linux/Unix code).

Although some functionality has been built in for direct serial I/O (as opposed to the more standard TCP/IP I/O using terminal servers), and for Windows NT, these options are not fully tested and debugged as of this writing.

Fields

· mode ("tty", "termserv" or "network")

· deviceName (e.g. "COM1", "/dev/ttyS0", "128.104.238.212:80")

Methods

· new

· initSerial

· readNBytes

· readSerialUntilTimeout

· readSerial

· writeSerial

gpstime� on PC-104

GPS Clock

DOM

Test Board

DOM Messages

(over RS-232 cable)

Messages and timing signals

(over 2km cable)

DOM Messages

(over network

sockets)

DOMTBControl

domtest

or other application running on Linux PC

Terminal Server

DOM

Test Board

syncserver on PC-104 (e.g., skua.spole.gov)

DOMSet communic-ations API

Syncserver Messages

(over network

socket)

UTC Data

 (1/sec, RS-232)

