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SECTION 1

INTRODUCTION

_____________________________________

BACKGROUND RTXC, the Real-Time eXecutive in C, is an efficient
software  framework with which to develop real-
time embedded systems on a broad range of micro-
processors, microcontrollers, and DSP processors.
The RTXC Application Program Interface (API) has
understandable Kernel Service names which make it
easy to learn and easy to use. That ease of use
translates to less time involved with system matters
and more time to spend on developing the
application.

Based on concepts developed by Dr. E.W. Dijkstra
in the mid-1960s with an implementation history
dating from 1978, RTXC provides a sound
foundation for the solution of complex real-time
systems. It is based on the concept of preemptive
multitasking which permits a system to make
efficient use of both time and system resources.
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As a system developer, however, it is our belief that
you cannot be in control of your product without
access to the most fundamental software in the
system, the real-time kernel. Therefore, it is our
policy to license and distribute RTXC in source code
form only.

If you use RTXC in a product in compliance with
the terms of E.S.P.’s software license agreement,
you may do so without payment of royalties for your
continued use of it regardless of the number of
instances of use or the number of products into
which it is integrated.
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FEATURES RTXC provides many features which are designed to
support real-time, multitasking systems. These
features include:
• Multitasking with preemptive task scheduling

• Round Robin and Time-Sliced scheduling within
same priority level

• Support for static and dynamically created tasks

• Fixed or dynamically changeable task priorities

• Intertask communication and synchronization via
semaphores, messages, and queues

• Efficient timer management

• Timeouts on many services

• Management of memory

• Resource management

• Fast context switch

• Small RAM and ROM requirements

• Standard programmer interface on all processors

• Highly flexible configuration to permit custom fit
to the application
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USER'S MANUAL
SUMMARY

This User's Manual is not intended to be a tutorial
on real-time kernels in general. We assume that you
know the fundamentals of multitasking. We will try
to flesh out that knowledge by explaining the
"inputs" and "outputs" of RTXC as a software
component of your application.
The RTXC User's Manual is divided into nine (9)
separate sections which are summarized below.

Section 1 of this manual is an overview of RTXC.

Section 2 gives the RTXC Theory of Operations.

Section 3 details the organization and content of the
various RTXC control and data structures.

Section 4 is a brief tutorial on using RTXC.

Section 5 is the RTXC Kernel Service Reference
giving a description of each Kernel Service.

Section 6 deals with the use of RTXCgen to
generate and configure RTXC systems.

Section 7 discusses device drivers with emphasis on
interrupt service routines.

Section 8 introduces the system level debug utility
RTXCbug.
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Section 9 is for Application Notes which may be
sent to you periodically.
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RTXC AS A
SOFTWARE
COMPONENT

RTXC is furnished as a set of C language source
code files. In its distribution form, it is not
executable. You must compile it and link it with the
object files of your application programs, the system
configuration files, as well as the object form of any
device drivers peculiar to the application.

You should treat RTXC as any other software
library. It is not necessary that you know how RTXC
performs its functions internally. Rather, you need
only know what Kernel Services of RTXC to use to
achieve a desired result. Thus, RTXC becomes much
like a large scale integrated circuit component in the
hardware. Knowledge of what inputs produce what
outputs is all that is needed to use the part
successfully.

Unlike a chip, however, RTXC users have access to
its source code to supplement their usage knowledge
or to resolve technical issues about RTXC internals.
With the source code, users may even wish to
extend the functionality of RTXC by the addition of
new services. The result is that an RTXC user can
exercise complete control over the application.
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RTXC LIBRARY
CONFIGURATIONS

RTXC is distributed in three source code
configurations defined by the set of Kernel Services
embodied in each. The different configurations are
available to meet the real needs of the embedded
systems marketplace where there is a wide diversity
of functional capabilities required in a real-time
kernel. RTXC allows you to license the source code
library that most closely fits your needs. If you need
more capabilities later on, there is a simple upgrade
path.
The three source code libraries, Basic, Advanced,
and Extended, are compatible with each other. All of
the services in the Basic Library are included in the
Advanced Library. And all of the Advanced Library
is part of the Extended Library. If you have obtained
a license for the Basic Library, you may upgrade to
either the Advanced or Extended Library without
changing the application programs developed with
the Basic Library.

The Kernel Service descriptions in Section 5 will
indicate to which RTXC configuration each Kernel
Service belongs. The method is explained in the
following paragraphs.
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BASIC LIBRARY The Basic Library, RTXC/BL, consists of the
fundamental operations you need to be able to use
all classes of RTXC system components, tasks,
messages, mailboxes, queues, semaphores, memory
partitions, and timers. In the Kernel Services
Reference in Section 5, you will see the following
symbol for a Kernel Service in the Basic Library.
Note that the three check marks indicate that the
service is to be found in all three RTXC source code
configurations.
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ADVANCED
LIBRARY

RTXC/AL, the RTXC Advanced Library, augments
the RTXC Basic Library with additional Kernel
Services. Most of the additional functions are related
to allowing a task to perform some synchronous
operation with some system resource. The following
symbol indicates that the corresponding Kernel
Service is part of the Advanced and Extended
Libraries only. It is not found in the RTXC/BL
configuration.
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EXTENDED
LIBRARY

The Extended Library, RTXC/EL, contains the full
complement of RTXC services. The additional
Kernel Services offered in the Extended Library
implement the services with timeouts. The single
check in the symbol below indicates that an
associated Kernel Service is only in the Extended
Library. It is not in either the Basic or Advanced
Libraries.
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TARGET
ENVIRONMENT

RTXC is designed to operate in an embedded
system, that is, one which is intended to perform a
defined set of jobs with little or no operator
intervention. No assumptions are made about the
configuration of the target system. It is the
responsibility of the user to define the target
environment and to insure that all necessary devices
have program support.
You will also find that there is a test application
included as part of the standard RTXC distribution
package. The test software, furnished in source code
form, provides you with a good example of how to
construct an application using RTXC.
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GLOSSARY OF TERMS

API See Application Program Interface.

Application Program
Interface

The rules and syntax defining how an application
program accesses the kernel and its services.

Blockage A setting of a task's status which prevents the task
from executing. In order to get control of the CPU,
a task must not have anything blocking it.

CPU Central Processing Unit. Also a shorthand term
referring to a computer.

Clock Tick One single event of the system's time base indicating
that a predetermined amount of time has elapsed.
Clock ticks occur at regular intervals.

Clock Driver That portion of the system which is dedicated to
servicing Clock Ticks for the purpose of time
management as required by various Kernel
Services.

Critical Region A section of program within which the program is
vulnerable to undesirable interruption or corruption.

Current Task The task which is currently in control of the CPU
and is, by definition, the highest priority task in the
READY List.
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Doubly Linked List A Threaded List which uses a forward link to point
to the next node in the list and a backwards link
pointing to the previous node in the list. End nodes
are treated specially.

Executive See Kernel.

Event An occurrence of something in the process requiring
a response or invocation of some action, e.g., a
Clock Tick.

FIFO See First-In-First-Out.

First-In-First-Out A method of serving a chronological set of items,
e.g., a line of waiters at a box office. Also known as
"first come, first served".

Free Pool A set of unused elements or kernel objects mapped
by some mechanism which permits rapid removal
from and insertion into the set.

General Timer A timer used for general purpose timing and having
a Handle.

Handle An identifier used to indicate a particular RTXC
kernel object.

ISR See Interrupt Service Routine.
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Interrupt Service
Routine

A program module which deals exclusively with
servicing an exception to the normal flow of
processing caused by a particular event.

Kernel The multitasking control and library of services for
use by the system designer to promote an orderly
implementation of the application.

Kernel Object A data structure or object used by the kernel for
purposes of task control, memory management,
timer control, exclusive access, or intertask
communication and synchronization.

Kernel Service A function of the Kernel which performs a
particular operation affecting multitasking.

Mailbox A kernel object which serves as a repository for
messages sent by one or more tasks and intended
for another task or tasks.

Message A data structure composed of a Message Envelope
and a Message Body all of which is deposited into a
mailbox for pickup by a recipient task.

Message Body That part of a Message which contains application
oriented information.

Message Envelope A kernel object and part of a Message which
contains information specific to RTXC necessary to
route the message and provide a return path.
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Message Priority An arbitrary value which can be used to assign
relative importance to a message at runtime.

Microcontroller A single semiconductor package containing a
combination of a CPU and several related peripheral
devices which form a complete computer system
capable of operation with minimal external circuitry.
Microcontrollers are ideally suited to embedded
systems.

Microprocessor A CPU which may or may not have some basic
peripheral devices combined into a single part.
Usually microprocessors are perceived to be more
powerful than microcontrollers.

Partition An RTXC kernel object which plays a part in
managing Free Pools of RAM.

Queue An RTXC kernel object which operates as a FIFO
buffer for chronological processing of data.

RAM Acronym for Random Access Memory. RAM is
volatile memory and is only valid when power is
supplied. It may be either static, i.e., not requiring
refreshing, or dynamic, which requires periodic
refreshing to maintain content. RAM is usually used
to store variable data which must be both written
and read.

READY List An RTXC Doubly Linked List which links the
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TCBs of each task having no Blockage. The first
entry in the list is the TCB of the Current Task.

ROM Acronym for Read Only Memory. ROM is non-
volatile memory when power is not present. It may
be read but not written under program control.
ROM is most useful for storing programs.

Resources An RTXC kernel object used to designate some
data element, structure, device, or other entity for
which one task at a time may need exclusive access
for brief periods.

Semaphore An RTXC kernel object which is associated with an
Event and whose content yields information about
the state of the event.

Signal An action applied by a Kernel Service to a
Semaphore to indicate the occurrence of the
associated Event.

Singly Linked List A Threaded List consisting of a single link to the
next node in the thread.

TCB See Task Control Block.

Task The fundamental program element, usually
represented as a C function, in a system operating
under RTXC. An application may be composed of
one or more tasks.
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Task Control Block An RTXC kernel object containing everything
about a task needed to permit any supported
multitasking scheduling discipline.

Task Number A number used to identify a Task Control Block
and, by implication, the task associated with that
TCB.

Task Priority A number defining the relative importance of the
task with respect to all other tasks in the application.
The higher the priority, the more time-critical the
task.

Threaded List A data construct in which one data structure, or
node, is linked to another data structure by one or
more address pointers. The list is headed by a
pointer to the first node. The first node contains the
address of the second node in the list, etc. If the
thread pointer is NULL, usually zero, the thread is
said to be EMPTY.

Waiter A task which is waiting on the availability of a
kernel object, RTXC data element, or an Event.
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SECTION 2

THEORY OF OPERATION

_____________________________________

WHAT IS A
REAL-TIME
KERNEL?

A real-time kernel, also called a real-time executive,
is a program which implements a set of rules and
policies about allocation of a computer system's
resources. Policies are those principles which guide
the design. Rules implement those policies and
resolve policy conflicts. Neither can be violated
without indeterminate or catastrophic results to the
system's operation.

An example of a policy would be that the design
must be deterministic, i.e., predictable. A rule
example might be that threaded lists permitting
random order of node insertion and/or deletion shall
be implemented as doubly linked lists. This is an
implementation of the policy of deterministic design.
The double links permit direct access to a node
during the deletion process, thus making it a
predictable procedure.



  THEORY OF OPERATION RTXC User's Manual

  2-2 Copyright  Embedded System Products, Inc.

The rules permit software processes to operate and
gain access to various system resources in an orderly
manner. Access to the kernel's services may take
several forms but is usually one of calls to
subroutines or higher language functions. The
kernel's services embody and enforce these rules to
ensure orderliness in the application processes which
use them.
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RTXC POLICIES In order to understand much of what is to follow in
this manual, an explanation of the policies of RTXC
is in order. If your application design conforms, you
should produce an efficient system design.

Policy............................. RTXC should contain a sufficient number and types
of services to make it useful to a variety of real
applications.

Policy............................. RTXC should employ a multitasking design in order
to achieve maximum CPU efficiency.

Policy............................. RTXC multitasking should be driven in response to
system events, whether of internal or external origin.

Policy............................. The executive should support an application design
composed of a set of separate but interrelated tasks
each having a priority indicative of its relative
scheduling importance.

Policy............................. RTXC performance should be deterministic to the
greatest extent possible.

Policy............................. RTXC should have a small RAM requirement for
kernel operations.
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Policy .............................RTXC should be written in such a manner that it
imposes minimal overhead to the application tasks it
is governing.
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RTXC
BASIC RULES

The following rules attempt to implement some of
the RTXC policies above. An understanding of these
rules will enable you to resolve questions about how
the kernel is operating.

Rule ............................... The Current Task (i.e., the task which is currently in
control of the CPU) is the highest priority task in the
system which is not otherwise blocked (Ready).

Rule ............................... The Current Task maintains control of the CPU until
it runs to completion (i.e., termination), voluntarily
yields, becomes blocked by unavailability of a
needed resource, or is preempted.

Rule ............................... If a task of higher priority than the Current Task
becomes Ready, it preempts the lower priority task
and becomes the Current Task.

Rule ............................... The RTXC Kernel is interruptible, but not reentrant.

Rule ............................... An Interrupt Service Routine (ISR) must not issue a
Kernel Service request except for those specifically
permitted in an ISR.

Rule ............................... The Null Task is always the lowest priority task and
whose priority must never be changed.
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Rule................................The Null Task must always be Ready and MUST
NEVER be blocked.
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SYSTEM
RESOURCES

The design of the kernel must be concerned with the
management of certain system resources which
include the CPU, memory, and implicitly, time. Each
must be shared among the competing processes in
such a manner that the overall function of the system
is accomplished.
Sharing memory is obviously essential as it is a finite
resource in the system. The CPU must be shared to
increase its efficiency because it is usually much
faster than the physical process it is controlling or
monitoring. To have it wait on a slow process would
be inefficient, thereby violating a basic system policy.

Time is the most difficult of the resources managed
by the kernel as it is the most unforgiving. The
design and code of Kernel Services must be such
that they require minimal execution time yet are
predictable. Execution speed of the various services
determines the responsiveness of the system to
changes in the physical process. But speed alone is
not sufficient. It is equally important that each
service be predictable with respect to time.

Without the predictability, a system designer would
have no assurance that the timing constraints of the
physical process would be met.
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MULTITASKING Multitasking is one of the major policies
implemented in a modern executive. Real-time
kernels of today generally make use of some part of
the work done by Dr. E.W. Dijkstra in the early and
mid-1960s. While multitasking was an
acknowledged concept before then, it is his work
which has had the most impact as it formulated a set
of constructs and rules for implementing such a
design.
Multitasking appears to give the computer the ability
to perform multiple operations concurrently.
Obviously, the computer cannot be doing two or
more things at once as it is a sequential machine.
However, with the functions of the system
decomposed into different tasks, the effect of
concurrency can be achieved.

In multitasking, each task, once given operating
control of the CPU, either runs to completion, or to
a point where it must wait for an event to occur, for
a needed resource to become available, or until it is
interrupted. Because the computer is usually much
faster than the events in the physical process,
efficient use of the computer can be obtained by
using the time a task might wait for an event to
occur to run another task.

This switching from one task to another forms the
basis of multitasking. The result is the appearance of
several tasks being executed simultaneously.
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READY LIST The key to multitasking is the READY List. This list
is constantly being changed by various Kernel
Services which insert runnable tasks or remove
those which are blocked and temporarily not able to
run. The READY List is actually a doubly linked list
containing those tasks which are runnable (Ready) in
descending order of priority. Thus, the Current Task
is always the first task in the thread.

A couple of rules about the READY List are:

Rule ............................... The READY List MUST never be a NULL (empty)
list.

Rule ............................... The Null Task must terminate the READY List.
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TASKS In RTXC, a task is a program module, a process,
which exists to perform a defined function or set of
functions as part of an overall application.  An
application usually consists of several tasks. A task
is independent of other tasks but may establish
relationships with other tasks.  These relationships
may exist in the form of data structures, input,
output, or other constructs.
A task executes when the RTXC task scheduler
determines that the resources required by the task
are available and that no other task of higher priority
is also ready to run. Once it begins running, the task
has control of all of the system's resources. But as
there are other tasks in the system, a running task
cannot be allowed to control all of the resources all
of the time. Thus, RTXC implements the policy of
multitasking.
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NULL TASK The Null Task is a special task in RTXC and
performs a vital service. During system initialization,
the Null Task is inserted into the READY List as the
first Ready task, and having the lowest possible
priority. The Null Task acts as a list terminator
because the RTXC Task Dispatcher knows that
there is always at least one Ready task in the
READY List. All other tasks will be of higher
priority than the Null Task; therefore, when they
become Ready, their position in the READY List
will be higher than that of the Null Task.
There are more rules regarding the Null Task:

Rule ............................... It MUST always be the lowest priority task in the
system.

Rule ............................... The Null Task MUST never become blocked for any
reason.
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PRIORITY AND
PREEMPTION

A multitasking real-time executive promotes an
orderly transfer of control from one task to another
such that efficient usage of the computer's resources
is achieved. Orderly transfers require that the
executive keep track of the needed resources and the
execution state of each task so that they can be
granted to each task in a timely manner.
The key word is timely. A real-time system which
does not perform a required operation at the correct
time has failed. That failure can have consequences
which range from the benign to the catastrophic.
Response time to a need for executive services and
the execution time of such services must be
sufficiently fast and predictable. With such an
executive, application code can be designed such
that no need goes undetected.

Real-time systems usually consist of several
processes, or tasks, which need to have control of
the system resources at varying times due to the
occurrence of external events. These tasks are at
various times competing for system resources such
as memory, execution time, or peripheral devices.
They range from being compute bound to I/O
bound.

Tasks which are I/O or compute bound  cannot be
allowed to monopolize a system resource if a more
important function requires the same resource.
There must be a way of interrupting the operation of
the task of lesser importance and granting the
needed resource to the more important task.
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One way to achieve timeliness is the assignment of a
priority to each task. The priority of a task is then
used to determine its place within the sequence of
execution of other runnable tasks. Tasks of low
priority may have their execution preempted by a
task of higher priority so that the latter can perform
some time critical function.
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EVENT DRIVEN
OPERATION

An event can be any stimulus which requires a
reaction from the executive or a task. Examples of
an event would include a timer interrupt, an alarm
condition, or a keyboard input. Events may originate
externally to the processor or internally from within
the software. An executive which responds to these
events as the stimuli for allocating system resources
is said to be event driven.

If the response time of the system to any event
occurs within a period of time which can be
accurately predicted and guaranteed, the executive
can be said to be deterministic. By these definitions,
RTXC is a deterministic, event driven, multitasking,
real-time executive.

The RTXC construct associated with an event is the
Semaphore. An RTXC semaphore is not a counting
semaphore as defined by Dijkstra nor is it a simple
binary event flag. An RTXC semaphore is a tri-state
device capable of containing information about its
associated event and the task waiting on the event.
This points out the major rules regarding the use of
RTXC semaphores.

Rule................................A semaphore can be associated with only one event
at a time.

Rule................................Any event used for task synchronization must be
associated with a semaphore.
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It is considered a design error if a task attempts to
synchronize with an event using a semaphore which
is already in use by another task for the same
purpose. The offending task receives an indication of
the error and it is up to the task to handle the
situation. Rather than spending programming time to
adjust for the error, a better solution would be to
adjust the design of the task to prevent the error.

Rule ............................... Only one task at a time may use a semaphore for
synchronization with the associated event.
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TASK SCHEDULING The policy of multitasking in RTXC is realized by
the manner in which the various tasks are scheduled
for operation. As previously stated, the RTXC Basic
Rules do not enforce any specific task scheduling
protocol. They only state general rules regarding
preemption, CPU control, and Current Task
definition.
Over many years of real-time systems development
there have been three basic means (or protocols) of
scheduling tasks within a multitasking policy. In fact,
it could be said that there are actually only two
methods with one of them having a variant. These
protocols are usually called Round Robin, Time-
Sliced, and Preemptive scheduling.

Round Robin Round Robin scheduling is probably the oldest of
the three multitasking methods and is also very
simple in that it is essentially a polling protocol. As
RTXC grants control to each such task, it is the
responsibility of the task to determine if the
conditions are correct for it to run and for how far.
Once the Round Robin task determines that it can
progress no farther due to the unavailability of some
system element, it must yield control of the CPU or
become blocked. If it becomes blocked, RTXC
removes it from the READY List. If it yields, it can
yield control only to another task of the same
priority. This gives rise to the fundamental rule
about Round Robin scheduling.
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It is permissible in RTXC to have only some of the
tasks in the application using Round Robin
scheduling. Those that use the protocol must follow
the rule above, but those not using it may have
different priorities. While there may be a mixture of
scheduling protocols, the RTXC Basic Rules
regarding preemption still apply to Round Robin
tasks.

It is important to note that because of the way
Round Robin scheduling is performed, any task of
lower priority cannot gain control of the CPU while
Round Robin tasks are in the READY List.
Therefore, the possibility exists that a task so
positioned in the READY List might never gain
control of the CPU.

Consider the scenario where the READY List
contains four tasks, A, B, C, and D, where A, B, and
C are Round Robin tasks having the same priority,
and task D is lower priority. RTXC grants task A
control and, following the second Basic RTXC Rule,
controls the CPU until it voluntarily yields control to
task B. Since there is no higher priority task in the
READY List, the possibility of preemption is
eliminated.

Even though it is yielding control, task A remains in
a READY state and is thus reinserted into the
READY List at a position following the last task,

Rule ............................... A set of tasks using a Round Robin scheduling
protocol must have the same priority.
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task C, having the same priority. The READY List
then contains tasks B, C, A, and D respectively.

Continuing with the scenario, task B runs and yields
to task C leaving the READY List containing tasks
C, A, B, and D. Task C gains control, runs for a
while, and then yields control to task A. The
READY List resumes its original form, which is
tasks A, B, C, and D. From here on the cycle
repeats.

Throughout the process, task D never gets a chance
to execute because it never becomes the highest
priority task in the READY List. The situation will
persist until all of the Round Robin tasks, A, B, and
C, become blocked.

It would be logical to assume that, at some point,
only one of the Round Robin tasks, task B for
example, will remain in the READY List with task
D. Task D would still not be scheduled when task B
attempts to yield control because of the second rule
concerning Round Robin scheduling.

By this rule, task B will remain the Current Task
forcing task D to remain waiting for CPU control
until tasks A, B, and C are blocked and no longer in
the READY List.

Rule................................The Current Task attempting to yield control will
remain the Current Task unless it and the next task
in the Ready List have the same priority.
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The use of Round Robin scheduling, while quite
simple, has important ramifications in a real-time
system and should be used judiciously. Of primary
importance is the fact that the tasks execute
sequentially because they lack a priority
differentiation. The time through any Round Robin
cycle varies according to the amount of code
executed in each task. Similarly, the time from when
an event occurs until it is serviced or used is
unpredictable because it varies according to which
task is executing at the time of the event's
occurrence. Thus, this method of task scheduling
can be very nondeterministic. In hard real-time
applications, this method should be used cautiously.

The advantage of Round Robin scheduling,
however, also lies in its simplicity. With the
complexity of preemption eliminated, the
relationships between tasks are usually predictable.

Time-Sliced Time-Sliced scheduling can be considered a variant
of Round Robin scheduling. The difference between
the two protocols is that the Time-Sliced task may
only execute for some predefined quantum of time.
If the task remains in control of the CPU long
enough for the time quantum to expire, RTXC
automatically forces the task to yield. The task may
also voluntarily yield (or block) prior to the
expiration of the time quantum.
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RTXC does not enforce a global specification of a
time quantum for all tasks. Instead, RTXC time
quantums follow the rule below.

The amount of each time quantum can be tuned for
the specific task thus making the overall system
response better than for a single global specification.

Because Time-Slicing is a variant of Round Robin
scheduling, RTXC has a similar rule regarding task
priorities.

All tasks at the same priority are not necessarily
scheduled by a Time-Sliced protocol. RTXC permits
there to be a mix of Time-Sliced tasks and Round-
Robin tasks at the same priority. Using a mixture of
scheduling protocols within the same priority level
can have some pitfalls and should be employed with
care.

For example, consider two tasks, A and B, to be
equal priority. Task A uses Time-Slicing but task B
does not. When task A exhausts its Time-Slice
quantum or voluntarily yields, RTXC passes control
to task B.  It is possible in this example that task B
may never pass control back to task A.  This is a
conscious decision in the design of RTXC to allow

Rule................................Each task using Time-Sliced scheduling must have
its own non-zero time quantum.

Rule................................A set of tasks using a Time-Sliced scheduling
protocol must have the same priority.
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for such a case. It is deemed the designer's choice to
make, not the kernel's.

This rule functions exactly as it does for Round
Robin scheduling. Whether the yield is made
voluntarily or is forced by RTXC, the above rule
applies.

The time quantum for a Time-Sliced task is cleared
when the task is initially executed. Time-Sliced
scheduling of a task is enabled by a Kernel Service
which sets the time quantum to a non-zero value.
Whenever the time-slice timer expires during Time-
Sliced operation, it is reset to the current time
quantum amount. If the task is preempted or
blocked as the result of an RTXC Kernel Service
request, RTXC does not subtract the duration of the
preemption from the task's time quantum. Instead,
the remaining time is simply preserved at the time of
preemption or blockage, and that same amount of
time is given to the task when it resumes.

Rule ............................... The Current Task being forced to yield control will
remain the Current Task unless it and the next task
in the READY List have the same priority.

Rule ............................... If a Time-Sliced task is preempted or blocked, the
amount of time remaining on the current quantum is
preserved.

Rule ............................... It is permitted to change the time quantum of a task
while the task is in the READY List.
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If a task's time quantum is changed from a non-zero
value to zero, Time-Slicing is disabled for that task
effective the next time the task is granted CPU
control. If  a time quantum is changed from zero
(disabled) to non-zero (enabled), then Time-Slicing
is enabled with the new time slice value the next
time the task is scheduled. If a time quantum is
changed from a non-zero value to a different non-
zero value, the new time quantum value is not
effective until the old value expires. If an immediate
time quantum change is required, change the time
quantum value to zero, and then change it to the
desired value.

Like Round Robin, Time-Sliced scheduling carries
some of its own caveats. Time-Slicing should be
used when it is well suited to the physical process of
the application. Proper usage of Time-Sliced
scheduling requires a thorough understanding of the
physical processes of the application and how the
various tasks in the system operate on the process.

The ability to tune the time quantum on each task
can be an important element in a successful
application implementation, but it can also be easily
abused. Each time a Time-Sliced task's time
quantum expires it requires some activity in RTXC
necessary to process the forced yield. Proper
selection of time quanta based on a knowledge of
the process can produce a responsive system capable
of producing good results even though it cannot be
said to be strictly deterministic.
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It is quite common to try to improve the
responsiveness of individual tasks by selectively
adjusting upstream time quanta, usually by making
them smaller. However, if those time quanta are
improperly chosen and become too small, the
amount of time spent in RTXC servicing expired
time quanta can become excessive, and overall
system performance can degrade. This is one of the
fundamental behavior characteristics of Time-Sliced
scheduling.

Preemptive Most users of RTXC will select the Preemptive
protocol as the preferred method of scheduling
tasks. While it supports both Round Robin and
Time-Sliced scheduling, the design of RTXC's suite
of Kernel Services primarily supports Preemptive
task scheduling as the normal protocol. Through the
use of task priorities and event driven operation,
RTXC provides the basis for successful, responsive,
and deterministic system design.

Unless specifically noted, the descriptions in this
manual of the various functions of RTXC and its
support services imply applicability to usage within a
Preemptive scheduling protocol.
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KERNEL SERVICES Except for the selection and dispatching of the ready
tasks, as performed by the RTXC Task Dispatcher,
most of the code in RTXC is that necessary for
Kernel Services. The Kernel Services are the various
functions which RTXC performs when requested by
an application task.
RTXC Kernel Services exist as routines which are
executed by the Kernel Service Dispatcher. When a
task needs some function which the kernel performs,
it makes a Kernel Service Request. A Kernel Service
Request takes the form of a C function call to a
function which resides in the RTXC Application
Program Interface Library. The purpose of the API
Library is to structure the function arguments and to
call the Kernel Services Dispatcher. Once there, the
requested service is determined, and the
corresponding kernel library function is executed to
perform the requested operation.

After completing the function, control usually
returns to the requesting task. However, there are
circumstances during the course of performing the
service where a higher priority task becomes Ready,
or some system element needed by the Current Task
is unavailable. If so, the Kernel Service functions
may preempt the Current Task or block it and make
another task the Current Task. After such an
occurrence, RTXC grants control to the new
Current Task instead of the one which made the
Kernel Service Request.
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Tasks become Ready at varying rates and are
inserted into the READY List as they do so. Once
there, they execute in accordance with their
respective priorities. Higher priority tasks are run
ahead of those of lower priority. Just as they become
Ready, tasks also are removed from the READY
List when they become blocked. Thus, the
scheduling of tasks is very dynamic and closely
related to the functions performed by the various
Kernel Services.
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DATA MOVEMENT RTXC supports two primary methods of moving
data from task to task: chronological and with
respect to priority. Both methods require intervening
constructs to provide a standard interface between
the sending and receiving tasks.

For chronological data movement, the interface
construct is a FIFO Queue. For movements with
respect to priority, RTXC provides for bi-directional
message transmission.

FIFO Queues Queues are circular buffers which hold data entries
of one or more bytes. This gives rise to the rules
about queues.

Rule................................A queue has a capacity (Depth) of a predefined
number of entries.

Rule................................Within a given queue, an entry has a predefined size
(Width).

Rule................................When a queue has no entries, it is in an EMPTY
state.
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Entries are put into a queue by moving the data from
the source into an entry slot in the queue. RTXC
keeps track of the available free entry slots in the
queue as it must know whether the queue is
EMPTY, FULL, or in between. As the insertion
procedure is chronological, the newest entry is at the
end of the queue while the oldest entry is at the head
of the queue. Attempting to put an entry into a
FULL queue causes a condition which requires
attention by the requesting task or by RTXC.

Removal of an entry from a queue involves locating
the oldest entry in the queue and moving the data
therein to a given destination location supplied by
the requesting task. An attempt to remove data from
an EMPTY queue requires extraordinary action by
either the Kernel Service or by the requesting task.

Mailboxes The interface between a message sender and the
receiver task is a Mailbox. A Mailbox is a construct
which promotes the orderly accumulation of
messages from various senders. RTXC supports a
variable number of independent mailboxes capable
of containing mail from multiple senders. RTXC mail
is always in the form of a message.

Rule ............................... When a queue has all entries occupied, it is in a
FULL state.
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While more than one task may send messages to a
given mailbox, the mailbox should be considered to
be owned by a single receiver task. The analogy
would be similar to your personal mailbox. You
receive mail from many senders, but only you read
your mail. By the same token, you don't look in your
neighbor's mailbox.

Therefore, the rules about mailboxes are:

Messages Messages are unlike queues in that the data in the
messages is not moved about. Instead, pointers to
the data are passed. This makes for a very efficient
way to move about large volumes of data without
actually having to load and store individual bytes or
words of data.

Rule................................Any task can send mail to any mailbox.

Rule................................A task may own none, one, or many mailboxes.

Rule................................Only one task should receive mail from a given
mailbox.

Rule................................A message added to a mailbox is inserted into the
mailbox's linked list according to the message's
priority.
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Thus, the rules concerning Messages are:

Synchronous
Transmission

Messages may be sent synchronously, that is, with
an automatic wait until there is an acknowledgement
response from the receiver. When a task wants to
send a message synchronously, it must specify a
semaphore number as one of the arguments in the
Kernel Service request. The reference associates the
semaphore with a message acknowledgement
performed by the receiver.

Once the message is linked into the specified
mailbox, RTXC blocks the sender by changing its

Rule ............................... A task may be both a message sender and a message
receiver.

Rule ............................... A message may be sent synchronously or
asynchronously.

Rule ............................... Message acknowledgement is an Event.

Rule ............................... Each message has two parts: an associated envelope
and a message body, both of which must be located
in RAM.

Rule ............................... Each message has a user-defined priority.
Rule ............................... There is no defined format for a message body other

than that upon which the sender and the receiver
agree.
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state and removes it from the READY List. With the
removal of the sender task (which was the Current
Task) from the READY List, the next task in the
READY List becomes the Current Task.

The receiver removes the message from the mailbox
and processes it according to the content of the
message body. When the receiver no longer needs
the data in the body of the message, it acknowledges
the message thereby making the sender task
runnable again and allowing it to continue its
operation.

The body of the message can also be used by the
receiver to return a response to the sender. This is a
very efficient way of passing data bi-directionally
between two tasks with little overhead. The
mechanism is quite simple.

The sender sends the message and waits for the
receiver to acknowledge the message. The receiver
task receives the message and, at some point in its
processing, inserts a response into the message
body. It acknowledges the message at an appropriate
point. When the acknowledgement occurs, the
sender task resumes and examines the response
information in the message body as returned from
the receiver. The sender then continues with its
processing based on the indicated response.

Asynchronous
Transmission

If the sending task does not wish to wait on the
action of the receiver or if there is no response



  RTXC User's Manual THEORY OF OPERATION

  Copyright  Embedded System Products, Inc. 2-31

required, it may send a message without waiting for
receipt or completion of processing to be
acknowledged. This makes it possible for a sender to
send multiple messages to a receiver, or, simply do
something else while the receiver processes the
message.

Even though a task sends a message without waiting
for the response, a semaphore can still be associated
with the message. Doing so makes it possible  for
the sender to wait for the message
acknowledgement event at some point subsequent to
the send operation.

If the receiver completes use of the message by the
time the sender waits for that event, the sending task
continues operation without interruption. If the
receiver has not yet completed processing of the
message, the sender must wait for the event to
occur. When it does occur, the sender's operation is
resumed.

As for synchronous transmissions, the message body
may also be used to transfer information bi-
directionally between the sender and receiver tasks.
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TIME Managing time is fundamental to a real-time kernel.
In RTXC, time is evidenced by the receipt of
periodic interrupts from a system time base.  The
interrupts are referred to as ticks and constitute the
period granularity of the device which generates the
interrupts. Timer granularity, specified during system
generation, may be fixed or configurable. However,
once configuration of the timer device takes place
during system initialization, it must not change
during RTXC operation.
Timer ticks serve three purposes in RTXC:

• General purpose timing

• Timeout timing

• Elapsed time counting

General purpose timing serves to synchronize a task
with an event which takes place after a certain
amount of time passes.

Timeout timing permits tasks using certain Kernel
Services to be blocked for a limited amount of time.
This facility is quite useful in certain applications
where it may be necessary to ensure that a task is
not blocked for a long period of time.

Elapsed time counting permits RTXC to provide the
elapsed time between any two events. There may be
any number of elapsed time intervals being counted
at any given moment.
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The basic rules of time management in RTXC are as
follows:

Timer Devices The device which generates the interrupts is
particular to the hardware implementation. It may be
an external timer or a timer which is "on-chip".
Whatever the source, the device must provide an
interrupt (a tick) at a fixed interval.

Timer Ticks Timer ticks represent time since they occur at a fixed
frequency. By counting ticks, one may calculate time
with an error of less than one tick. Actual time may
be reduced to RTXC ticks by a simple multiplication
or division depending on the granularity of the time

Rule ............................... All RTXC time is measured in timer ticks.

Rule ............................... The period between timer ticks is fixed once RTXC
is initialized.

Rule ............................... The period between timer ticks is configurable if
permitted by the physical timer device.

Rule ............................... Expiration of a general purpose timer is an Event.
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base device.
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MEMORY SHARING RTXC manages RAM memory through a mapping
scheme which employs a system of memory
partitions. RTXC can support any number of static
or dynamic memory partitions. Static memory
partitions must be fully defined while dynamic
partitions need only be enumerated during system
generation. Dynamic memory partitions reside in a
free pool until such time as they are allocated for
use.
When in use, each partition is composed of any
number of blocks. Within a single partition, all
blocks are of the same size. While different
partitions will likely employ different size blocks,
more than one partition may use the same size block.

The blocks in a memory partition are initially
threaded together in a singly linked list. RTXC
allocates a block from a memory partition by
unlinking it from the thread. The reverse process is
used when freeing a block by inserting it back into
the linked list.

The purpose of such a memory management scheme
is to prevent fragmentation of RAM. Fragmentation
is a situation which results when arbitrarily sized
amounts of memory are allocated and freed from the
heap. If this is permitted, at some point the heap will
become so fragmented that there will not be enough
contiguous memory available to fulfill a request. At
that point, the system becomes non-deterministic if
the request is to be fulfilled.
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By definition, if a process is not predictable, it is not
deterministic. The routine to reform the heap may
take an indeterminable amount of time depending of
the severity of the fragmentation. If a time critical
process were waiting for that memory space to be
allocated, an event could be missed with adverse
consequences.

RTXC cannot prevent an application task from using
all of the blocks in a map and asking for more.
However, RTXC does provide Kernel Services
which return an indication that there are no blocks
available. It then becomes the responsibility of the
programmer or system designer to provide the
program steps which deal with the situation.

Rule................................All blocks within a given memory partition must be
the same size.

Rule................................A block within a memory partition can be no smaller
than the size of a pointer.

Rule................................A dynamically defined memory partition must be
allocated from the pool of free partitions before it
can be used.
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EXCLUSIVE
ACCESS

Exclusive access to some physical device,
application construct, or system element is permitted
by RTXC through the use of RTXC Resources.
These kernel objects are similar to Dijkstra's mutex
semaphores and perform the same function. The first
rule concerning exclusive access defines a resource.

Such a broad definition allows anything to be treated
as a resource. Because the resource is a logical
construct, there need be no physical means of
seizing the entity during the period in which
exclusive access is required. This introduces the
concept of ownership of the entity and another rule.

In RTXC, exclusive access to an entity is granted to
a task; therefore, the owner of a resource is a task.
In a multitasking environment, it is quite likely that
two or more tasks may attempt to gain exclusive
access to an entity. Assuming that the associated
resource is unowned, ownership will be granted to
the task whose request occurs first, regardless of its
priority with respect to other requesting tasks.

Rule ............................... A resource is a logical construct associated with
some entity.

Rule ............................... Only the owner of a resource can access the
associated entity to the exclusion of other users.

Rule ............................... A resource can be owned by only one task at any
given time.
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However, assuming that the resource is owned when
ownership requests are made by two or more tasks,
the possibility exists that the designer may wish the
tasks to wait for access to the entity before
continuing. At some point, the owning task will
release the resource, and RTXC will grant
ownership to one of the waiting tasks according to
the following rule.

The rules concerning resources describe a software
protocol to gain exclusive access to and to release
the entity associated with the resource. A task
needing an entity must first become owner of its
associated resource. During the period of
ownership, the entity can be used exclusively by its
owner. When its need for exclusive access is
finished, the owning task must then release the
resource.

Rule................................A task may own more than one resource at any
given time.

Rule................................Ownership of a resource remains with the task until
such time as it voluntarily releases it.

Rule................................If two or more tasks are waiting to gain ownership
of a resource that is already owned, the next owner
will be the waiting task having the highest priority.
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SECTION 3

RTXC FUNCTIONAL OVERVIEW

_____________________________________

INTRODUCTION In the previous section, the policies and rules which
constitute the theory of operation of RTXC were
presented. This section puts those theories into the
context of actual system function by presenting how
RTXC uses its various control and kernel objects.
These control and kernel objects are data structures
which serve as interfaces between the kernel and the
application. Knowledge of how they work is
fundamental to building real-time application
systems around RTXC.

This section describes these kernel objects and their
interrelationships. The descriptions will include:

• TASKS

• SEMAPHORES

• MAILBOXES
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• MESSAGES

• QUEUES

• TIMERS

• SYSTEM TIME

Mention will also be made of the RTXC Kernel
Services which deal with these data structures. A
complete presentation of the Kernel Services is
found in Section 5.
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TASKS In a real-time embedded system, the system designer
decomposes the overall function of the application
into smaller functional entities called tasks. The
nature of each task is, of course, application
dependent and left to the imagination of the system
designer. Tasks are the workhorse program elements
as they implement the design policies about
management of the application processes.

The primary purpose of a real-time kernel is to serve
those tasks. The kernel provides a set of services so
that tasks may react to or synchronize with events
and pass data between each other. RTXC provides a
complete set of functions for dealing with tasks,
from their definition to the various Kernel Services
on through to system level debugging.

Task Definition Before a task may execute, it must be defined to the
system along with all of its attributes. RTXC
supports both static and dynamic tasks. Static tasks
are those whose attributes are known before the
system executes and which remain fixed for the life
of the configuration. Dynamic tasks are those whose
TCBs are allocated and whose attributes are defined
as the result of some situation in the process which
requires their existence.
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Static
Tasks

RTXC employs the concept of predefinition of most
kernel objects among which are the various static
tasks constituting all, or part, of the application.  For
static tasks, TCB allocation and task definition occur
through use of the system generation utility,
RTXCgen

With RTXCgen, the user defines a new static task or
changes a characteristic or attribute of an existing
static task. Information about each static task
includes the various task attributes which are put
into several tables. Among these tables is a task
definition block which RTXC uses to build a Task
Control Block when a KS_execute() request is made
to execute a given static task. RTXC uses the TCB
to manage the task while it is executing.

In addition to the task information needed for TCB,
RTXCgen also permits the user to specify whether
or not the task is to be started automatically and to
specify its position in the starting sequence. The
starting sequence number is not related to the task's
identifier number or its priority. The user may also
specify whether the task requires an extended
context.
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Dynamic
Tasks

In applications where the behavior of the process
requires tasks to be created or defined dynamically,
the attributes of such tasks are not known before the
system is generated. Instead, such tasks are created
"on-the-fly" by another task, or tasks, which also
specifies via RTXC Kernel Services the task's
attributes and environment.

For dynamic tasks, TCB allocation and attribute
definition occurs under program control. To use
dynamic tasks, the user must first employ RTXC
Kernel Services to allocate a Task Control Block.
Because dynamic task's TCBs are allocated from a
pool of free TCBs with the KS_alloc_task() Kernel
Service, such a task may use one TCB in one
instance and a different TCB in another.

After allocating a TCB for the dynamic task, the
user must define the task's attributes through the
RTXC Kernel Service, KS_deftask(). Once the
attributes are defined, execution of the task may be
invoked by KS_execute() in the same manner as for
a static task.



  FUNCTIONAL OVERVIEW RTXC User's Manual

  3-6 Copyright  Embedded System Products, Inc.

Number of Tasks The number of tasks which RTXC supports is
determined by the system designer. Through
definition of the storage quantum used for  data of
type TASK, the user defines the maximum possible
number of tasks permitted in the system. Thus, in a
large system, TASK may define a 16-bit entity
theoretically permitting up to 32,766 tasks. On the
other end of the scale, a microcontroller may use an
8-bit field which permits up to 126 tasks in a single
system.

Due to the manner in which RTXC kernel objects
are accessed, it is necessary during system
generation to specify the number of dynamically
defined tasks that the application is required to
accommodate. RTXCgen uses that number to
allocate an equal number of additional Task Control
Blocks which form the pool of free TCBs from
which dynamic allocations are made.

Having the actual number of static tasks, NTASKS,
in the application and the number of possible dynam-
ically defined tasks, DNTASKS, RTXCgen automati-
cally adds the two to derive
Control Blocks needed in the system.
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Task
Organization

RTXC treats a task as though it were a C function.
Consequently, tasks should be written as a function
called by the RTXC Task Dispatcher. There is one
main difference between an RTXC and a C function,
however. In RTXC, the task (i.e., function) never
returns to its caller.

There are two basic code models for RTXC tasks. In
the first, a task begins execution at its entry point
after being invoked by a KS_execute() function,
performs its required operations, and terminates
using the KS_terminate() Kernel Service. This
"once-only" design assumes the following code
model:

void taskname(void)
{
   ... Data declarations
   ... Task initialization

   ... Task operations

   KS_terminate(SELF);
}
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In the second model, a task never terminates but
executes forever in a loop architecture. When using
a loop architecture, a task assumes the following
code model. Notice that there is no request to
terminate the task as in the first example.

void taskname(void)
{
   ... Data declarations

   ... Task initialization

   for (;;)
   {
      ... Task operations
   }
}

Task Attributes Each task has a purpose which is application specific
thereby making it unique. However, in order to
provide a consistent interface between the
programmer and the operating environment, all tasks
must share a common set of attributes. These
attributes define all the information about a task the
kernel needs to manage it properly. They include:

• Task Identifier

• Priority

• Task Control Block
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• Entry Point

• Stack

• Processor Context

• Extended Context (optional)

Task
Identifier

Each task is identified by a numerical identifier
which is a number from 1 to the maximum number
of tasks, NTASKS, inclusively. For example, if you
have defined the system to have 12 tasks, all task
numbers must be between 1 and 12 inclusively. The
task identifier, or number, provides a reference
during executive operations and is associated with
the TCB. The task number serves no purpose other
than as a means of determining which task is being
referenced.

Task numbers for statically defined tasks will range
from 1 to the number of static tasks, NTASKS, as
defined during system generation. If dynamically
allocatable TCBs are defined, their numbering begins
at the number of static tasks plus 1 (NTASKS+1).
They also have a maximum number of
DNTASKS+NTASKS, where DNTASKS is the
number of dynamic tasks.

Task
Priority

The priority of a task is indicative of the relative
importance of the task with respect to the other
tasks and, indirectly, to time. Normally, each task
has a unique priority but RTXC also allows multiple
tasks to have the same priority.
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The Task  is considered an signed number. It may be
any value between 1, the highest priority, and one
less than the largest possible number in a data
quantum of type PRIORITY. If a 16-bit value, the
maximum task priority is 32,766. If an 8-bit number,
the maximum priority is 126. Whatever the size of
the PRIORITY type data definition, the largest value
(all one bits) is the priority reserved for the Null
Task. Remember that a low numerical value of the
task priority number is a high priority.

A task's priority is inversely related to the numeric
value of the priority. The lower the value of the
priority number, the higher the task's priority. A task
having priority 1 is executed before a task at priority
2 which is executed prior to a task at priority 3 and
so on. The higher the priority, the more critical the
timely execution of the task when it is Ready.

Execution control is granted in descending order of
priority only to those tasks which are Ready. To
reiterate the Rule previously stated, the Current
Task, by definition, is the highest priority Ready task
in the system. A task having a higher priority than
the current task may exist, but if it is not Ready, it
cannot be considered for execution.
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Task
Control
Block

The task's state table is commonly referred to as a
Task Control Block (TCB). A TCB in RTXC is
located entirely in RAM and contains those data
about the execution state of the task. All of the
TCBs in a system are kept in an array which allows
direct access to the data based on the task number.
This makes for very quick access without wasting
time searching a linked list for a task name match.

The TCB contents include the following data about
the task:

• the Execution State containing a number which
the kernel interprets as the state of the task. A
value of zero ($00) indicates that the task is
Ready, or runnable. Any nonzero content in the
task's execution state indicates the task is
blocked and will prevent it from running.

• the Task Number (identifier)

• the Task Priority

• the Initial Entry Point specifying the address
where the task is to begin executing.

• the Stack Pointer containing the address of the
task's current top-of-stack.

• the Environment Arguments Pointer
containing the address, if any, of a structure
holding parameters which define the task's
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runtime environment. This member of the TCB
is most often associated with dynamic tasks.

Task
Stack

The policy of multitasking requires that each task
have a stack on which are stored local variables,
return addresses from subroutine calls, and the
context of the preempted task. The base address of
the stack is stored when the task is created for
execution.

For static tasks, you must specify the size of the
stack when you define the system configuration.
Stack sizes of dynamic tasks are defined when the
KS_deftask() Kernel Service is invoked. The size of
each task's stack is dependent on many things such
as the maximum depth of nested subroutines calls,
the maximum amount of working space needed for
temporary variables, and the size of any stack frames
used by the task. At minimum, the size of the stack
must allow for the storage of a complete processor
context.

In addition to the stacks needed by the tasks, there is
also the need for a stack for the kernel. This system,
or kernel, stack must have sufficient space to handle
the processor contexts for the maximum number of
interrupts possible at any given time, less one
context.

The sum of all of the stack requirements must not be
allowed to exceed available RAM.
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Processor
Context

The amount of space required to store a processor
context varies between processor types and models.
You should consult reference manuals pertaining to
your processor to determine the size of a processor
context. The stack frame structure is completely
defined in the RTXSTRUC.H file in the KERNEL
directory of the RTXC distribution.

Extended
Context

Some tasks, regardless of type, may make use of an
extended context involving more than the standard
processor registers. A common example would be
the use of a math coprocessor which contains its
own set of registers. The extended context, like the
basic context, also needs to be preserved in certain
task preemption conditions. The definition of the
task as one which employs an extended context
causes storage to be allocated for that purpose.

Environment
 Arguments

Dynamically created tasks are often an instance of
another task already running. In order to distinguish
one from another, RTXC uses a structure to contain
information that the task needs to define its runtime
environment. Hence, the name, Environment
Arguments.

RTXC makes no specification about the organization
or content of the Environment Arguments structure.
RTXC only uses pointers to the structure; thus, its
organization needs to be known only by the defining
task and the using task. RTXC provides a Kernel
Service, KS_deftask_arg(), to define the address of
the structure to the object task. An additional Kernel
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Service, KS_inqtask_arg(), is available to the using
task to retrieve the address of the structure.

Task Execution A task begins execution only when it is instructed to
do so by the automatic startup procedure or upon
command. Because a task is a function to the RTXC
Task Dispatcher, a task can only begin execution
from its starting address.

Static
Tasks

Execution of a static task begins when the task is
made runnable and is inserted into the READY List
by another task using a KS_execute() function.
Static tasks do not necessarily need Environment
Arguments. However, RTXC permits static tasks to
have defined Environment Arguments if they are
defined prior to execution of the task.

Dynamic
Tasks

Execution of a dynamically created task must follow
a particular sequence in order for it to run. The
sequence is:

1. Allocation of the Task Control Block

2. Definition of Attributes

3. Definition of Environment Arguments
(if any)

4. Execution

Allocation of the TCB assigns to the task the next
available TCB from the free pool with the



  RTXC User's Manual FUNCTIONAL OVERVIEW

  Copyright  Embedded System Products, Inc. 3-15

KS_alloc_task() function. Having the TCB, the task
creating the dynamic task must use the KS_deftask()
Kernel Service to define the task's attributes. Next,
the created task's Environment Arguments, if any,
may be defined. The KS_deftask_args() Kernel
Service is used to set up the pointer to the task's
Environment Arguments. Finally, the task may be
invoked by the KS_execute() Kernel Service.

READY List The READY List is a doubly linked list linking
together the TCBs of those tasks which are capable
of execution once they gain access to the CPU. The
list is ordered in descending order of task priority.
Thus, the highest priority task capable of receiving
CPU control is always at the head of the READY
List. The RTXC Task Dispatcher never needs to
search for the highest priority task.

A task may share the same priority with one or more
other tasks. If there is at least one more task at the
same priority, the second TCB is inserted after the
first task at that priority, the third after the second,
and so on.

When a task becomes blocked, for whatever reason,
it is no longer capable of receiving control of the
CPU. Thus, a blocked task must be removed from
the READY List.
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Task States A task is always in one of two basic states:
runnable or blocked.

When runnable, a task has been readied for
execution either by the automatic startup procedure
or by request from another task. There are no
impediments to its execution other than its gaining
control of the CPU. A runnable task is always placed
in the READY List at a position relative to its
priority and that of the other tasks in the READY
List.

A blocked task is not found in the READY List. It is
not capable of receiving CPU control as it is waiting
for some external event to occur which will remove
the blocking condition. RTXC blockages occur for
the following conditions:

• INACTIVE - Inactive (Idle)

• QUEUE_WAIT - Waiting on a queue condition
(Queue_not_Full or Queue_not_Empty) to
occur

• SEMAPHORE_WAIT - Waiting for a semaphore
to be signaled

• MSG_WAIT - Waiting to receive mail

• BLOCK_WAIT - Blocked by RTXCbug
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• RESOURCE_WAIT - Waiting for a resource to
become available

• DELAY_WAIT - Waiting for a delay period to
expire

• PARTITION_WAIT - Waiting for a memory
partition to have a block available

• SUSPFLG - Suspended

Task
Termination

A task should never execute a return statement,
explicitly or implicitly. The proper way to terminate
execution of an RTXC task is through use of the
KS_terminate() Kernel Service.

The following code model constitutes improper
coding of an RTXC task and should, therefore,
be avoided.

void taskname(void)
{
   ... Data declarations
   ... Task initialization

   ... Task operations

}
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INTERTASK
COMMUNICATION
AND
SYNCHRONIZATION

The policy of having an event driven multitasking
system requires flexible means of intertask
communication and synchronization. The capability
of RTXC to synchronize tasks with events and to
move data from task to task is at the heart of system
functionality.

RTXC provides a rich set of services whereby two
or more tasks can synchronize or communicate with
one another. There are three major mechanisms
through which this is accomplished:

• SEMAPHORES

• MESSAGES and MAILBOXES

• FIFO QUEUES

Since some events are likely to be of an external
origin, another important system capability is its
handling of interrupts.
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SEMAPHORES There are several forms that a semaphore may take
in the design of a real-time kernel.  RTXC uses a
semaphore construct that is known to handle most
events and is low in operational overhead and RAM
requirements.

RTXC semaphores are the primary mechanism of
synchronizing a task with an event. Each semaphore
contains information about the state of the
associated event and any task trying to synchronize
with the event. RTXC provides several Kernel
Services to deal with processing events using
semaphores. Such Kernel Services are associated
with one of the possible state transitions of a
semaphore.

The use of an RTXC semaphore is quite simple. For
instance, one task may need to wait for the other to
reach a certain point before continuing. Input/output
operations are examples of this type of
synchronization.

Consider a driver task which inputs data from an
external device. The device driver task must wait for
the input event to occur.  When the input operation
happens and causes an interrupt, the device driver's
interrupt service routine reads the device and signals
that the event has occurred. Signaling the semaphore
causes the waiting device driver task to resume,
presumably to process the input data. The
synchronization of the task with the event is done
with the use of a semaphore.
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Semaphore Definition The system designer defines all semaphores via
RTXCgen during the system generation process.
Semaphores are assigned names which equate to
numbers. The semaphore name or number is its
identifier. The semaphore number is assigned in the
order of its appearance in the list of all semaphores.
No special significance is implied by a semaphore's
identifier. It is simply an index into the RTXC
semaphore table defined during the system
generation process. RTXC expects all semaphore
references to be by the semaphore identifier.

Semaphore Identifiers The user specifies the size of the data quantum
needed for a semaphore identifier through definition
of data type SEMA. The size of the defined data type
determines the maximum number of semaphores that
are possible. An 8-bit definition has a maximum of
126 semaphores while a 16-bit definition limits a
design to 32,766.
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Semaphore States An RTXC semaphore contains a value representing
one of the three possible states in which it can exist.
These states are:

• PENDING

• WAITING

• DONE

A PENDING state indicates that the event
associated with the semaphore has not yet occurred
and is therefore pending.

The WAITING state shows that not only has the
event not yet occurred, but a task is waiting for it to
happen.

The DONE state tells that the event has occurred.

RTXC startup code initializes all semaphores to the
PENDING state.

State Transitions RTXC semaphores have a very strict state transition
protocol which is automatically managed by RTXC.
The permissible state changes are shown below in
Figure 3-1.
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Figure 3-1
Semaphore State Transitions



  RTXC User's Manual FUNCTIONAL OVERVIEW

  Copyright  Embedded System Products, Inc. 3-23

Using
Semaphores

RTXC semaphores provide the fundamental tools
for providing a means of intertask synchronization.
The basic use of semaphores is that of a "handshake"
in which one task waits for a signal and another
provides the signal. While there are also indirect
uses of semaphores in RTXC, as in messages and
timers, all RTXC semaphore usage reduces to this
simple relationship.

Because semaphores are always associated with an
event, the use of semaphore and event are
interchangeable. In fact, it sometimes makes for a
better explanation to speak in terms of events rather
than of semaphores, as that more closely
corresponds to the real world.

Event Waiting For a task to synchronize with an event it must first
wait for the event to occur. To do this, the task
waits on an RTXC semaphore using one of three
Kernel Services, KS_wait(), KS_waitm(), or
KS_waitt(). Each will change the state of a given
semaphore according to its content at the time of the
wait request.

If a task attempts to wait on a semaphore in the
PENDING state, the state of the semaphore is
changed to WAITING. The Current Task will be
blocked with SEMAPHORE_WAIT and removed
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from the READY List. Additionally, the task's
execution is suspended until the event occurs.

If the Current Task attempts to wait on a semaphore
which is in the DONE state, the wait does not occur
(since the desired event has already happened), and
the task is immediately resumed. RTXC auto-
matically changes the semaphore state back to
PENDING.

An attempt to wait on a semaphore which is already
in the WAITING state can cause unpredictable
results and should not be attempted. Although the
Kernel Service KS_wait() returns an indication in
this situation, it should be considered a design error.

Event Signaling Signaling a semaphore constitutes the second action
in the handshake. The occurrence of a specific event
can be indicated by signaling the semaphore
associated with that event. For tasks performing a
signal, RTXC provides the Kernel Services,
KS_signal() and KS_signalm() for that purpose. It is
also possible to signal one or more semaphores from
an interrupt service routine.

Thus, a signal may originate in either a task or in an
interrupt service routine. Regardless of the signal
origin, the state transition of the semaphore and any
further action taken by RTXC depends on the state
of the semaphore after the signal.
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When signaling a semaphore in a PENDING state,
the semaphore goes to the DONE state.  As this
action does not concern any task, RTXC takes no
further action. If signaled from the Current Task, it
remains in control and continues processing.

However, the signaling procedure gets more
complex if the semaphore is in a WAITING state.
The state of the semaphore does not go to DONE
but instead returns to PENDING. This action saves
the application software from the chore of
maintaining the state of the semaphore.

Next, the RTXC signaling function determines the
identity of the waiting task and unblocks it by
removing the SEMAPHORE_WAIT condition. Once
the waiting task is unblocked, and found to be
runnable, RTXC inserts it into the READY List. If it
is of higher priority than the signaling task, it
becomes the new Current Task. Thus, synchroniza-
tion of a task to an event can occur with a simple
semaphore.

Signaling a semaphore which is already in the
DONE state indicates that the previous event has
not been processed. It is also indicative that no task
has issued a wait request for that event since its last
occurrence. Simply put, there is something wrong
because the system is not able to keep up with
events.
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State Forcing The third set of Kernel Services dealing with
semaphores are those intended to preset the state of
one or more semaphores, KS_pend() and
KS_pendm(). These Kernel Services force the state
of a semaphore to PENDING. As the system
maintains semaphore states automatically, there is
little use for these services except in very specific
circumstances.

There are times when it may be necessary to ensure
that a wait will occur. If you are uncertain about the
state of the semaphore, simply precede the wait
request by a call to one of the semaphore pend
Kernel Services above.
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MAILBOXES Mailboxes are the interface between tasks which
send messages to each other. Consequently, it is not
necessary for a sender task to know anything about
a receiver task's internal structure, or vice versa.
This promotes a very clean and efficient mechanism
for passing data.

Mailbox
Definition

Definition of each mailbox occurs during system
generation. You define a symbolic name for each
mailbox, and that name becomes the mailbox
identifier. The name is equated to a number based
upon the position of the mailbox in the list of
mailboxes. There is no priority inherent in the
mailbox name or number.

Mailbox
References

Mailboxes are identified by a number which has a
value between 1 and the maximum number of
mailboxes specified in the system configuration.
determines the number of specified mailboxes and
defines it as NMBOXES. A mailbox identifier is a
data value of type MBOX. You should define MBOX
in accordance with your system needs. Definition of
MBOX should be either an 8-bit or 16-bit value.

Mailbox Structure A mailbox resides in RAM and includes the head
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link of a singly linked list. The list threads together
all of the messages currently in the mailbox in
descending order of message priority as defined by
the senders. The head link in a mailbox contains the
address of the highest priority message waiting to be
received by the mailbox owner.

The highest priority message is linked to the next
highest priority message, and it in turn is linked to
the third highest priority message, and so on until
the end of the thread. The last message in a mailbox
will contain a NULL link.

If no message is waiting in the mailbox, the head link
contains a NULL.

The mailbox also contains an element which
optionally defines a semaphore. RTXC does not
make an assignment of a semaphore to the mailbox
but does provide a Kernel Service,
KS_defmboxsema(), for doing so.

Using Mailboxes Mailbox usage is directly associated with the
transmission of messages between tasks. The
description of message transmission will also serve
to show how mailboxes operate.

Using a Mailbox
Semaphore

The structure of a mailbox includes an element for a
semaphore assignment. The semaphore has an
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implicit association with the event occurring when a
message arrives at an empty mailbox. In normal
operation where a task uses a conditional or
unconditional message receive, this semaphore is not
necessary. RTXC performs all of the necessary
functions to ensure that a waiting receiver task
becomes runnable when the message arrives.

However, a task may need to receive mail from
multiple mailboxes or need to synchronize with
other events as well as the arrival of mail. To
accomplish such a feat, the task must know not only
when an event occurs but also the identity of the
event.

RTXC provides two Kernel Services which
accomplish this quite easily. The task must first
assign a semaphore to each event on which it must
wait. A special Kernel Service, KS_defmboxsema(),
associates a semaphore with mail arriving at an
empty mailbox.

Having defined a null terminated list of semaphores
on which it is to wait, the task invokes the
KS_waitm() Kernel Service using a list of
semaphores. All of the semaphores in the list are set
to a WAITING state if they are all PENDING. Any
semaphore found in a DONE state will cause the
immediate resumption of the task. If all are
PENDING, RTXC blocks the task and removes it
from the READY List.

When an event associated with one of the
semaphores in the list occurs, RTXC resumes the
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waiting task and returns the identity of the
semaphore which was signaled. In this manner, the
task knows the identity of the event and takes action
accordingly.

For example, KS_waitm(), used with a list of
mailbox semaphores, will block the Current Task if
all of the mailbox semaphores are PENDING. When
mail arrives at any of the mailboxes associated with
the listed semaphores, the Current Task resumes.
KS_waitm() returns the number of the semaphore
associated with the event which occurred. Having
the semaphore number, it is quite simple to derive
the identity of the mailbox with mail. The task would
then use a KS_receive() request to receive the mail
directly from the specific mailbox.

A code model for handling multiple mailboxes
through the use of mailbox semaphores is illustrated
below.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"
#include "cmbox.h"

void taskname(void)
{
   RTXCMSG *msg;
   SEMA cause;
   SEMA semalist[] =
   {
      MBXSEMA1,           /* Mailbox 1 semaphore */
      MBXSEMA2,           /* Mailbox 2 semaphore */
      0                   /* null terminator */
   };

   /* Define semaphore for mailboxes */
   KS_defmboxsema(MBOX1,MBX1SEMA);
   KS_defmboxsema(MBOX2,MBX2SEMA);

   for (;;)
   {
      /* wait for either of 2 events */
      cause = KS_waitm(semalist);
      switch(cause)
      {
         case MBX1SEMA:
           msg = KS_receive(MBOX1, (TASK)0);
            ... process msg ...
            break;

         case MBX2SEMA:
           msg = KS_receive(MBOX2, (TASK)0);
            ... process msg ...
            break;
      }  /* end of switch */
      KS_ack(msg)
   }  /* end of forever */
}
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MESSAGES Messages are one of the means by which data moves
from a sender to a receiver task. Every task running
under RTXC is capable of being both a message
sender and receiver. Message transmission involves
the transfer of data packets from one task to another
via mailboxes. Messages are transmitted from a task
by being placed in a mailbox used by a receiving
task.
RTXC does not actually move the content of a
message from the sender to the receiver. Instead,
RTXC puts the address of the message into a singly
linked list found in the receiving mailbox. Placement
of messages in the mailbox list is in a descending
order of message priority. The sender assigns the
message priority. When the receiver requests receipt
of the next message, RTXC returns the address of
the message which has the highest priority of all
current mail in the mailbox.

It is possible, however, to temporarily suspend this
order of receipt by requesting only those messages
from a particular sender task. This can be useful
when it is desirable not to mix messages on a shared
resource, for example, a printer.

Message Structure A message is a two-part construct residing in RAM
and consisting of a message envelope and the
message body. RTXC maintains the content of the
message envelope. The task is responsible for the
message body. The message body may be of any
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format recognizable by the sender and receiver.
Using the message body, data may be passed in
either direction between sender and receiver.

The message body is contiguous to the envelope.
The message body may be a simple pointer to
another area located in either RAM or ROM. It may
also be part of a single message structure enclosing
both the message envelope and the message body.
To reiterate, the content of the message can be
anything mutually agreed upon by the sender and the
receiver.

Message Priority Each message has a priority assigned by the sender
task when the message is sent. The message priority
has no explicit relationship with the sender's task
priority. It is simply a number between 1 and the
maximum priority inclusively. However, a message
may be sent with a priority of zero (0) which causes
RTXC to assign the message a priority equal to the
sender's task priority. RTXC uses the message
priority as the key in inserting the message into the
thread of the specified mailbox. Different tasks may
use the same message priority without problem.

Note that if all senders use a fixed priority for all
messages sent to a given mailbox, the result is a
FIFO.
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Using Messages Messages are sent from one task and received by
another. Like any postal service, RTXC takes the
message from the sender and puts it into a mailbox.
The mailbox is known by the sender to be used by
the receiver. There is a direct analogy with a letter
being mailed.

The letter's sender puts the letter (the message body)
into an envelope and puts the recipient's address on
the envelope. The letter is then posted (sent) to the
postal service. The postal service delivers the letter
to the mailbox at the address given on the envelope.
At some time subsequent to delivery, the recipient
checks the mailbox and retrieves the letter.

If the recipient were especially anxious to receive
the mail, he might have checked the mailbox before
the letter was delivered only to find the mailbox was
empty. This corresponds to the situation of a
receiver task checking a mailbox by trying to receive
mail only to find the empty mailbox. Like the
anxious recipient, the task must decide what to do if
the mailbox is empty.

Since the recipient is a proper soul, he acknowledges
receipt of the letter by sending a reply by a similar
process. The sender of the original letter receives the
reply acknowledging his letter. The transaction is
then complete.
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Sending
Messages

RTXC provides two ways to send a message -
asynchronously and synchronously. When sending a
message synchronously, the sender sends the
message and does not proceed until it gets an
acknowledgment from the receiver task. In sending
asynchronously, the message is sent and the sender
task proceeds without waiting for an
acknowledgment. However, the asynchronous
sender may later choose to wait for an
acknowledgment.

Asynchronous
Messages

Asynchronous message transmission uses the
KS_send() Kernel Service. The use of KS_send()
may result in a context switch if the receiving
mailbox has a task waiting for mail, and that task is
of higher priority than the Current Task. Whether or
not there is a context switch, the sender of an
asynchronous message always remains in the
READY List. When the message is sent, the task
resumes processing immediately following the
KS_send() Kernel Service request.

It may be the design of the task to continue
processing after sending the message. If so, the task
may choose synchronization with the message
acknowledgment at a later time. To accomplish that,
the task should simply invoke the KS_wait() Kernel
Service using the message semaphore named in the
KS_send() call.
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An example is given below of a code model for a
task using a loop architecture and sending asyn-
chronous messages.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"            /* defines MSGSEMA */
#include "cmbox.h"           /* defines MAILBOX3 */

void taskname(void)
{
   struct {
   RTXCMSG msghdr;    /* Message envelope (req.) */
   char data[10];     /* Message body
   } mymessage;

   for(;;)
   {

      ... set up content of the message body

      KS_send(MAILBOX3, &mymessage.msghdr,
              (PRIORITY)4, MSGSEMA);

      ... do some more processing and then wait
          for the message acknowledgment

      KS_wait(MSGSEMA);         /* wait for ack */

      ... finish processing within the loop
   }
}
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Synchronous
Unconditional
Messages

Tasks sending synchronous messages use either
KS_sendw() or KS_sendt(). These two Kernel
Services are functionally equivalent to KS_send()
immediately followed by KS_wait(). A context
switch always occurs with the use of KS_sendw() or
KS_sendt() because the Current Task becomes
blocked while waiting to synchronize with the
message acknowledgment.

KS_sendw() will wait unconditionally until it
receives the message acknowledgment. The
following code example shows a task model using a
loop architecture while sending synchronous
messages with KS_sendw().

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"
#include "cmbox.h"

void taskname(void)
{
   struct {
   RTXCMSG msghdr;    /* Message envelope (req.) */
   char data[10];     /* Message body
   } mymessage;

   for(;;)
   {

      ... set up content of the message body

      KS_sendw(MAILBOX3, &mymessage.msghdr,
              (PRIORITY)4, MSGSEMA);

      ... continue processing after ack

   }
}



  FUNCTIONAL OVERVIEW RTXC User's Manual

  3-38 Copyright  Embedded System Products, Inc.

Synchronous
Conditional
Messages

Like KS_sendw(), the other synchronous message
sending Kernel Service, KS_sendt(), also waits for
receipt of the message acknowledgment. However,
it also starts a timeout timer within which the task
expects to receive the acknowledgment. If not, the
timeout expires and the task will have to execute
code to deal with the situation. An example of a task
sending messages in this manner follows.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"
#include "cmbox.h"
#include "cclock.h"

void taskname(void)
{
   TICKS timeout = 250/CLKTICK;      /* 250 msec */

   struct {
      RTXCMSG msghdr;   /* Message header (req.) */
      char data[10];    /* message body */
      } mymessage;

   for(;;)
   {

      ... set up content of the message body

      if (KS_sendt(MAILBOX3, &mymessage.msghdr,
                   (PRIORITY)4, GRAFSEMA,
                   timeout) == RC_TIMEOUT)
      {
         ... message not completed within timeout
             period. Deal with it with special code
      }
      ... message sent and acknowledged
   }
}
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Receiving
Messages

The Kernel Services KS_receive(), KS_receivew(),
and KS_receivet() will fetch mail from a mailbox if
present. If there is mail present when a receive
request is made, all of the RTXC Kernel Services for
receiving mail are identical. Each of the functions
returns a pointer to the retrieved message envelope
of the requesting task.

However, if no mail is present, the functions will
either report the empty condition or will block the
Current Task until mail arrives. A receiver task
attempting to receive mail always has to deal with
the problem of what to do if the mailbox is empty.
Depending on the Kernel Service used in the attempt
to receive the message, RTXC will:

a) notify the receiver task that the mailbox is empty
and let the task deal with it through special
program logic, or

b) block the receiving task until a message is sent
to the mailbox, or

c) block the receiving task until either a message is
sent to the mailbox or a defined period of time
elapses.
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Polled
Receipt

The first case is obvious. The task polls the mailbox
using the KS_receive() Kernel Service. If the
mailbox is empty, it is up to the system designer as
to how to proceed at that point. An example of a
task receiving mail in a loop-based task architecture
follows.

include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"             /* defines MYMAIL */

void taskname(void)
{
   RTXCMSG *msg;

   for (;;)
   {
      /* receive next message from any task */
      while (msg = KS_receive(MYMAIL,(TASK)0) == (RTXCMSG *)0 )
      {
         ... Deal with empty mailbox with special
             logic here
      }

      ... message received, process it

      KS_ack(msg);  /* ack completion of message */
   }
}
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Unconditional
Receive

In the second case, the receiver task uses the
KS_receivew() Kernel Service. It will remain
blocked until another task sends a message to the
empty mailbox. That event causes the waiting
receiver task to become runnable again and inserted
into the READY List. RTXC returns the address of
the message to the receiver task which continues
operation.

A code model for a task using KS_receivew()
follows.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"             /* defines MYMAIL */

void taskname(void)
{
   RTXCMSG *msg;

   ... task initialization

   for(;;)
   {
      /* receive next message from any task */
      msg = KS_receivew(MYMAIL, (TASK)0);

      ... process the message

   }
}
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Conditional
Receive

In the third case, the task uses the KS_receivet()
Kernel Service which combines elements of the first
two receiving functions. Like KS_receivew(), RTXC
blocks the receiver task but only until a message
arrives or the timeout elapses. If the former, it is
treated exactly as in the second case for
KS_receivew(). However, if the timeout expires, the
system designer must provide special code to handle
it. The procedure to follow, as in the first case, is up
to the system designer.

A code example of a task using KS_receivet()
follows.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"             /* defines MYMAIL */
#include "cclock.h"           /* defines CLKTICK */

void taskname(void)
{
   RTXCMSG *msg;
   TICKS timeout = 500/CLKTICK;      /* 500 msec */
   KSRC ccode;

   ... Task initialization

   for(;;)
   {
      /* receive next message from any task */
      while( (msg = KS_receivet(MYMAIL, (TASK)0,
                               timeout, &ccode)) ==
                                (RTXCMSG *)0 )
      {
         ... timeout occurred or there were no
             timer blocks available. Look at ccode
             to find out and then deal with the
             situation here.
      }

      ... message received, process it.

      KS_ack(msg);            /* ack the message */
   }
}
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Message
Acknowledge

A sender task may need to synchronize with the
receiver task's receipt or processing of a message.
RTXC makes it easy to do this through the
synchronous message sending services, KS_sendw()
and KS_sendt(). These two services automatically
block the sending task by performing an implicit
KS_wait() using the message semaphore. In the use
of KS_send() to send a message asynchronously, the
sending task is not blocked but continues
processing. It may eventually issue an explicit
KS_wait() using the message semaphore.

In the scenarios above, the sender task, having
assigned a message semaphore, sends the message
to the receiver and then, implicitly or explicitly,
waits for the message to be acknowledged. The wait
occurs in association with the given message
semaphore.

When the receiver receives or completes processing
of the message, it acknowledges the message using
the KS_ack() Kernel Service. This action amounts to
signaling the message semaphore. Thus, the
handshake with the waiting sender task is complete.
RTXC removes the SEMAPHORE_WAIT block on
the sender task to make it runnable again and puts it
back in the READY List.
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Message
Responses

If it had been necessary, the receiver task could have
stored a response in the message body. By doing so,
RTXC permits a simple but rapid means of passing
data bi-directionally between two tasks. This feature
makes it possible for two tasks to alternate the roles
of sender and receiver.

When returning a response to the message sender,
the receiving task should put the response in the
message body prior to invoking RTXC to
acknowledge the message.
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QUEUES A third technique whereby two tasks can
communicate and synchronize is via FIFO queues.
Queues are usually used to handle such operations
as character stream input/output or other data
buffering. RTXC provides a simple way of putting
data into and getting data from a queue.
RTXC queues differ from messages in that the actual
data rather than an address is entered or removed
from the queue. By definition, all RTXC queues use
a FIFO model. Thus, the queue content represents
the chronological order of data entry and extraction.
There is no priority considered with respect to the
order of entry as is the case with messages.

The system designer determines the number of
queues needed for the application as well as the sizes
of each. Each RTXC queue may be defined as
having a single or multiple bytes per entry.  RTXC
queues support a model allowing more than one task
to put data into a queue (Queuesmultiple producers)
and more than one task to remove data from a queue
(Queuesmultiple consumers).

The queueing techniques used by RTXC involve the
copying of data from a producer task into a FIFO
queue and thence to a consumer task. Two basic
Kernel Services are supplied, and each has two
possible variants. RTXC performs any necessary
synchronization between a queue's producer and
consumer tasks.
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Queue Definition The system designer defines all queues during the
system generation process using RTXCgen. Like
other system elements, queues are assigned names
which equate to numbers. The queue number is its
position in the list of all queues. There is no special
significance given to a queue identifier.

Queue Identifiers The system designer specifies the size of the data
quantum needed for a queue identifier. Queue
identifiers are numerical values of type QUEUE. The
size of a value of type QUEUE defines the maximum
theoretical number of queues in a system. An 8-bit
signed quantity permits up to 127 queues.

Queue Structure An RTXC queue has two parts: the header and the
body. Both parts of a queue must reside in RAM.
The queue header contains information needed by
the RTXC Kernel Services to move data into and
out of the queues properly. The queue body is
simply an area of RAM which is organized as an
array.

The queue body array contains a specified number of
entries having a specified size. All of the entries in a
given queue are the same size.
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The organization of the queue header includes two
elements which are defined during system
configuration:

• Width, queue entry size (in bytes)

• Depth, maximum length (in entries)

The size of the queue body is determined from the
Width and Depth definitions. The other elements of
the queue header are maintained internally by
RTXC. The queue header should never be
manipulated by a task.

Queue States Each queue must always exist in one of three
possible states:

• Empty - There are no entries in the queue.

• not_Empty_not_Full - There is at least one but
less than the maximum number of entries in the
queue.

• Full - All of the possible entries in the queue are
used.

RTXC initializes all queues to the Empty state
during system startup. Additionally, RTXC maintains
the queue state automatically and provides all
synchronization between producer and consumer
tasks.
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Using Queues Queues provide an easy way of moving data
between tasks so that the data may be processed in
chronological order. Unlike messages, there is no
priority assigned to a FIFO queue entry.

RTXC queue operations fall into two basic
categories: putting data into queues, enqueueing,
and getting data out of queues, dequeueing.  RTXC
provides one basic Kernel Service for each queue
operation, and each of those has two possible
variants.

Enqueueing
Data

The basic Kernel Service for putting data into a
queue is KS_enqueue(). The possible variants are
KS_enqueuew() and KS_enqueuet(). In order for
data to be put into a queue, there must be at least
one entry in the queue body which is unused and
able to receive the data. If the queue state is Full, all
entries in the queue are occupied, and there is no
place to put a new entry.

KS_enqueue() moves data from a source location
specified by the producer task, the Current Task,
and moves it into the next free entry in the queue.
The Kernel Service determines where the next free
entry is located by examining information in the
queue header about current usage. If the queue is
Full, the task is notified of the situation and must
deal with it in whatever manner is required by the
application.
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KS_enqueuew() and KS_enqueuet() operate in
exactly the same way as KS_enqueue() when the
state of the queue is either Empty or
not_Empty_not_Full. In other words, when there is
room in the queue, it may receive new data.
However, functional differences occur when the
queue is Full and an attempt is made to put a new
entry into the queue.

When the producer, the , attempts to put data into a
full queue while using the KS_enqueuew() Kernel
Service, RTXC will block the task. It will also
remove the task from the READY List, and make it
wait until a consumer task removes data from the
queue thereby opening a slot to receive the new
data. When the slot becomes open, the producer
task is automatically returned to the READY List
and allowed to continue its operation. Thus, the
synchronization between the producer and consumer
is performed without direct program intervention.

The use of the KS_enqueuet() Kernel Service is
exactly like that of KS_enqueuew() except that the
duration of the wait is limited by a user defined
period of time. The blocked producer task will
remain blocked until either a free slot becomes
available or until the specified time period elapses. If
the timeout occurs, the application program will be
so notified and must deal with the situation in a
manner consistent with the system design.

Dequeueing
Data

RTXC provides one main Kernel Service to get data
from a queue, KS_dequeue(), and two possible
variants, KS_dequeuew(), and KS_dequeuet(). All of
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these services operate in the same manner when the
state of the queue is either Full or
not_Empty_not_Full. The function locates the oldest
entry in the queue and moves it to a destination
specified in one of the calling arguments.

When the state of the queue is Empty, the
dequeueing functions operate slightly differently.
KS_dequeue() returns a function value to indicate
the Empty state situation. The consumer task must
recognize that return value and handle the situation
with program logic.

The variant, KS_dequeuew(), acts much like the
basic service except when the queue is Empty. In
that situation, it blocks the Current Task, removes it
from the READY List, and makes it wait for a
producer task to put data into the queue. When data
is put into the queue by another task, the consumer
task will be unblocked, reinserted into the READY
List, and allowed to continue. As in the basic
service, the data is moved from the queue to the
destination location specified by the consumer.

KS_dequeuet() is the same as KS_dequeuew() except
that the duration of the wait on an empty queue is
limited by a time period specified in the function call.
The blocked task will wait until either an entry is put
into the queue or until the timeout elapses. If the
entry is made within the timeout period, the Kernel
Service returns a value to indicate success. If the
timeout occurred, the returned value will so indicate.
Application code using the KS_enqueuet() Kernel
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Service will have to provide code to check on and
handle these various return values.

Producer and
Consumer Task
Synchronization

Queueing operation can result in a context switch
under certain circumstances. The obvious cases
occur when a wait occurs as the result of using
KS_dequeuew() or KS_dequeuet() on an Empty
queue or an KS_enqueuew() or KS_enqueuet() on a
Full queue. Less obvious cases occur when a queue
is Full and already has a producer task waiting or
when an Empty queue has a consumer task waiting.

Whenever a task invokes a queueing operation or is
forced to wait, the task is inserted into a list of
waiter tasks associated with the particular queue.
The order of insertion is by descending order of their
respective priorities. There may be more than one
task waiting to complete some activity on the queue.

As soon as the operation occurs which removes the
condition on which the waiter task is blocked, the
highest priority task is taken from the list of waiters,
unblocked, made Ready, and inserted into the
READY List. If the waiter task is of higher priority
than the , a context switch will result. In this manner,
RTXC maintains synchronization between the
producer and the consumer tasks when they use
queues.
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Synchronization
with Multiple
Events

There are certain cases in which the producer or
consumer may wish to override the automatic RTXC
synchronization methods. This is most likely to
happen when the task design requires it to be
synchronized with any of several events. RTXC
provides the KS_waitm() Kernel Service to allow a
task to wait on the logical OR condition of several
events. By using KS_waitm(), a task may easily wait
on the occurrence of any event associated with a set
of semaphores.

An example of this facility might be a task which
must synchronize with data arriving at any of three
different queues. One possible solution would be to
poll each queue periodically to determine if it has
data.

Another example might be a task which needs to
synchronize with an external event but also needs to
know whenever a particular queue gets full.
Depending on the time criticality of handling the two
possible events, a possible solution might be to wait
for the external event and then check the queue size.
Alternatively, another solution might be to check the
queue states periodically.

In an event driven system, none of these solutions is
necessarily a good design. It would be better, in the
first example, to have RTXC determine when data
arrives and inform the task as to which queue has
the data. In the second example, the kernel could
determine when the queue becomes full or when the



  FUNCTIONAL OVERVIEW RTXC User's Manual

  3-54 Copyright  Embedded System Products, Inc.

external event occurs and inform the waiting task
accordingly.  Both examples would benefit from the
use of the KS_waitm() Kernel Service. This method
would free the CPU to do other chores until such
time as any of the blocking conditions is removed.

Consider the following code example.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"
#include "cqueue.h"

void taskname(void)
{
   SEMA cause;
   SEMA semalist[] =
   {
      Q3NESEMA,      /* Queue 3 QNE semaphore */
      EXTEVENT,      /* External event semaphore */
      0              /* null terminator */
   };

   KS_defqsema(QUE3,Q3NESEMA,QNE)

   for (;;)
   {
      /* wait for either of 2 events */
      cause = KS_waitm(semalist);
      switch(cause)
      {
         case Q3NESEMA:
            ... process event by getting data...
                from the queue.
            break;

         case EXTEVENT:
            ... process the external event...
            break;
      }  /* end of switch */
   }  /* end of forever */
}
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The key to making these scenarios possible is the
definition of semaphores associated with different
queue events and the multiple event wait Kernel
Service, KS_waitm().

Queue Semaphores There are four possible queue conditions (or events)
with which to associate semaphores. The purpose of
these semaphores is to provide a mechanism by
which task synchronization may occur as a result of
certain changes in the queue state. In normal queue
usage, there is no real need for synchronization with
queue related events other than those already
provided by RTXC. However, it is sometimes
advantageous to use queue event semaphores for
special synchronization purposes. Almost without
exception, queue semaphores will be used in
conjunction with KS_waitm() Kernel Service.

All four semaphores relate to the four possible
changes-of-state events or conditions through which
a queue may transition. These four conditions and
their RTXC abbreviation codes are:

• Queue_Empty (QE) - The event which occurs
when a queue state changes from
not_Empty_not_Full to Empty.

• Queue_not_Empty (QNE) - The event which
occurs when a queue state changes from Empty
to not_Empty_not_Full.



  FUNCTIONAL OVERVIEW RTXC User's Manual

  3-56 Copyright  Embedded System Products, Inc.

• Queue_Full (QF) - The event which occurs
when a queue state changes from
not_Empty_not_Full to Full.

• Queue_not_Full (QNF) - The event which
occurs when a queue state changes from Full to
not_Empty_not_Full.

RTXC does not automatically associate any
semaphores with these possible queue conditions.
During system operation, the application tasks may
use the KS_defqsema() Kernel Service to perform
the associations. The associated semaphore is not
predefined and may be any semaphore from those
configured by the system designer.

If it becomes necessary to disassociate a queue event
from a semaphore, you may do so with the
KS_defqsema() function called with a semaphore of
zero ((SEMA)0).

Queue_Empty
(QE)

The QE semaphore is associated with the next
occurrence of the transition from
not_Empty_not_Full to Empty. If the state of the
queue is Empty when the QE semaphore is defined,
the semaphore is set to a DONE state. Otherwise,
the QE semaphore will be set to a PENDING state.

The following example, albeit contrived, illustrates a
simple use for the QE semaphore in a producer task.
This might be useful if the consumer task is at a
lower priority. Whenever the consumer removes an
entry from DATAQ, the producer task would be
allowed to put another entry in the queue. This
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might lead to some undesired "thrashing" between
the two tasks. The thrashing could be prevented by
having the producer task fill the queue and then wait
for the consumer task to empty it. The producer task
could synchronize with the transition to Empty and
then continue.

#include "rtxcapi.h"
#include "csema.h"
#include "cqueue.h"

char source;

KS_defqsema (DATAQ, EMPTYSEM, QE);

... new data is stored in source variable

while (KS_enqueue(DATAQ, &source) == RC_QUEUE_FULL)
{
   KS_wait(EMPTYSEM); /* task waits here until */
                      /* queue goes empty      */
}

Queue_not_Empty
(QNE)

When an entry is put into an empty queue, the state
of the queue changes from Empty to
not_Empty_not_Full. This is the Queue_not_Empty
(QNE) event. When KS_defqsema() is used to
associate a semaphore with the QNE condition, the
state of the semaphore follows the state of the
queue.

If the queue is Empty, the QNE semaphore is set
PENDING. While the queue remains Empty, a task
making a subsequent attempt to wait on the QNE
condition would be blocked and the semaphore
changed to a WAITING state.
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If the queue state is not_Empty_not_Full when the
QNE semaphore is defined, the semaphore state is
set to DONE. This setting indicates that the
associated event has already occurred, i.e., the
queue is no longer empty. A task which attempts to
wait for the QNE event would be allowed to
continue without being blocked because the event
has occurred. Unlike other semaphores, however,
RTXC ensures that the QNE semaphore remains in
the DONE state as long as the queue is neither
Empty nor Full.

The following example illustrates how a consumer
task can process data from multiple queues without
resorting to polling.

#include "rtxcapi.h"
#include "csema.h"
#include "cqueue.h"

char dest;
SEMA semalist[] = {EMPTYSM1, EMPTYSM2, 0};
SEMA cause;

KS_defqsema(DATAQ1, EMPTYSM1, QNE);
KS_defqsema(DATAQ2, EMPTYSM2, QNE);

cause = KS_waitm(&semalist);
switch(cause)
{
   case EMPTYSM1:
      KS_dequeue(DATAQ1, &dest);
      break;

   case EMPTYSM2:
      KS_dequeue(DATAQ2, &dest);
      break;
}
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Queue_Full
(QF)

The QF semaphore operates as a mirror image of
the QE semaphore. The QF event occurs when the
queue state changes from not_Empty_not_Full to
Full. The KS_defqsema() Kernel Service defines the
initial state of the semaphore. It is set to a
PENDING state when the queue is not full or to
DONE when it is Full.

Queue_not_Full
(QNF)

The QNF semaphore operates in a mirror image
fashion to the QNE semaphore. The QNF event
occurs when data is removed from a full queue,
thereby making it not_Empty_not_Full. This
transition may be signaled if a QNF semaphore has
been previously defined with the KS_defqsema()
Kernel Service. Like the QNE semaphore, the QNF
semaphore is set to PENDING if the queue is Full
when the definition occurs. It is set to DONE if the
queue state is not_Empty_not_Full when QNF is
defined. If a full queue has an entry removed, the
QNF semaphore will be signaled.

Purging a Queue Sometimes it is necessary to reset an RTXC queue
so that it is considered empty.  In RTXC, this action
is referred to as purging the queue. It is not an
action done frequently, but it can be useful at times.
It is accomplished by the KS_purgequeue() Kernel
Service and it has certain ramifications which must
be understood prior to use.

From the aspect of clearing the queue of all entries,
it is quite efficient because setting the current size of
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the queue to zero effectively clears all entries. A
larger problem than simply clearing the size of the
queue exists, however. The main question that
comes to mind would be the disposition of any tasks
waiting for any of the queue events and tasks
waiting for access to the queue.

Purging a queue is the logical equivalent of
removing the entire content of the queue one entry
at a time until the queue is empty. It is therefore
proper during a queue purge to treat the queue
semaphores as though the entries were removed
singly. RTXC does this in the following manner:

• QF always remains in its current state. It is never
signaled as the result of a queue purge.

• QNF remains in its current state if the queue
state was Full at the time of the purge. If the
state of the queue was not Full, the QNF
semaphore is not signaled.

• QNE always remains in its current state. It is
never signaled as the result of a queue purge.

• QE remains in its current state if the state of the
queue was Empty at the time of the purge. If the
queue was not Empty, QE is signaled.

In addition to purging the queue and treating its
queue semaphores, RTXC also handles any tasks
waiting to put data into the queue. If the queue was
Empty at the time of the purge, any waiter tasks are
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those trying to get data from the queue. RTXC
ignores these waiters.

However, if the queue had been Full at the time of
the purge, any waiter tasks would have been those
trying to put more data into the queue. These are the
tasks with which RTXC must deal. The solution is to
process each task waiting to put data into the queue
by moving the data into the queue and resuming the
task so that it can continue normally.

As each entry is placed into the queue, the queue
semaphores, QNE and QF, are properly treated.
The first entry into the queue causes a
Queue_not_Empty event requiring that the QNE
semaphore be signaled. If the entry makes the queue
become Full, the QF semaphore must be signaled.

Thus, purging the queue still retains the integrity of
the queue construct and its associated parts.
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RESOURCES RTXC permits a task to gain exclusive access to
some system component or element. This is
especially useful where it is necessary to guarantee
that one and only one user has control of an entity.
Any entity, logical or physical, may be defined as
one which requires restricted access. A database, a
special software function, or a printer are a few
examples.
In a multitasking system, it is often necessary to
have different tasks make use of a common entity. It
is also common to have a requirement that no task
shall be able to preempt the use of certain entities by
other tasks. Since an event driven design permits the
preemption of a task at any time by one of higher
priority, it is necessary to provide a mechanism for
preventing uncontrolled access to a common entity.
RTXC provides such a mechanism, a resource, for
doing this.

Use of a resource is simple.  are associated with
entities during the system generation process. The
association is purely logical since the entity may
itself be logical rather than physical. Whenever a
task wants to use a common entity with a guarantee
of exclusive access, it simply locks the resource.
Locking the resource prevents other tasks from
gaining access to the entity while another task has
access control.

After locking the resource, the task may use the
associated entity to whatever extent is necessary to
perform its functions. When the task has completed



  RTXC User's Manual FUNCTIONAL OVERVIEW

  Copyright  Embedded System Products, Inc. 3-63

its use of the entity, it reverses the process by
unlocking the resource. Unlocking the resource
permits another task to gain access control of the
entity.

Resource Definition The system designer defines all resources during the
system generation process using . Resources, like
other system elements, are assigned names which
equate to numbers. The resource number is its
position in the list of all resources. There is no
special significance given to a resource identifier.

Resource Identifiers The system designer specifies the size of the data
quantum needed for a resource identifier. These
identifiers are numerical values of type
RESOURCE. The size of a value of type
RESOURCE defines the maximum theoretical
number of resources in a system. An 8-bit signed
quantity permits up to 127 resources.

Resource Structure An RTXC resource contains two basic components,
the resource state and the list of waiters. The state
of the resource defines whether or not the resource
is "locked" (or owned). If locked, it also contains
the identity of its owner task.
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Only one task at a time may be the owner of the
resource. After a resource becomes owned, any
other task attempting to lock the resource will be
prevented from doing so regardless of the task's
priority relative to that of the resource's owner.

RTXC provides one basic Kernel Service to lock a
resource and one to unlock. The locking function
has two possible variants, both of which involve
waiting for the resource if it is owned at the time of
the request. With the variants, a lock request made
to a resource which is already owned will cause the
requesting task to be blocked, removed from the
READY List, and added to the resource's list of
waiters.

The resource's waiter list is a doubly linked list in
which new waiter tasks are inserted in descending
priority order. The highest priority task waiting for a
resource is always the first task in the list. When a
locked resource is unlocked, the highest priority
waiting task, if any, will gain access control of the
resource.

Resource States A resource always exists in one of two possible
states, Free and Locked. A task may become the
owner of a resource only when the resource is Free.
If there are no waiters for a Locked resource,
unlocking the resource by its owner changes the
resource state to Free.
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RTXC supports locking of a resource by its owner.
Nested locks might occur if a task, which has locked
a resource, calls a function in which the resource is
locked again. Such a situation does not cause a
conflict. However, for correct operation, RTXC
expects that for each lock there is an unlock.

Using Resources A task wanting to use an entity associated with an
RTXC resource must first lock the resource. When it
is finished with the resource, it must unlock it.
RTXC provides a basic Kernel Service for each of
these operations, KS_lock() and KS_unlock(). The
KS_lock() Kernel Services can be augmented by two
more functions which will block the requesting task
until the resource becomes Free. Unlocking is
universal and has no variants to the basic function.

Resource
Locking

The basic Kernel Service used to lock a resource is
KS_lock(). If a requesting task uses KS_lock() to
lock a resource and the resource is Free, the task
becomes the owner of the resource. If the resource
is already in a Locked state, the requesting task is so
informed by a value returned by RTXC. The task
must have the required program segment to detect
the returned value as well as deal with it according
to the task's function.

If the programmer does not want to have to write
that extra code segment to deal with the locked
resource, RTXC has two other Kernel Services
which will reduce the code burden. Both KS_lockw()
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and KS_lockt() will block the requesting task if the
given resource is already in a Locked state.

KS_lockw(), upon finding the resource to be Locked,
unconditionally blocks the task, removes it from the
READY List and inserts the task into the resource's
list of waiters. The task will remain in this condition
until it becomes the highest priority task waiting for
the resource when its current owner unlocks the
resource. The unlocking will cause the waiting task
to become unblocked and to be reinserted into the
READY List. The unblocked task then becomes the
resource's owner.

The KS_lockt() Kernel Service is much like that of
KS_lockw() except that the duration of the wait is
limited by a user definable time period. The task will
remain blocked until either the task gains access to
the resource or the timeout occurs. Both conditions
return a value which must be detected and handled
by the requesting task.

Resource
Unlocking

RTXC provides only one Kernel Service,
KS_unlock(), for unlocking a locked resource. There
are no variants. Besides the obvious function of
unlocking the resource, it will automatically lock the
resource for the highest priority waiting task, if any.
The new owner task will automatically be unblocked
and inserted into the READY List to resume its
operation.
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Priority Inversion While use of resources is simple, the rule that only
one task may own a resource can lead to an
undesirable situation known as priority inversion.
Priority inversion occurs when a lower priority task
blocks execution of a higher priority task.

Consider the scenario in which there are two tasks,
A and B, where task A is higher priority. Task A is
temporarily blocked and task B is the Current Task.
As part of its execution, task B locks Resource R
and continues. The event blocking task A occurs
causing task A to be returned to the READY List
preempting task B, since task A is higher priority.
Once it is in control, task A attempts to lock
Resource R and fails because the resource is owned
by task B.

The system now has a priority inversion dilemma - a
lower priority task, because of its ownership of the
resource, is blocking execution of a higher priority
task which also needs the resource. This situation
can lead to undesirable results if not handled.

RTXC provides a mechanism to handle priority
inversions that may be invoked at the discretion of
the system designer. Many tasks which use resources
do not encounter the possibility that a priority
inversion can occur. It would be counterproductive
to require that such a task be forced through the
priority inversion detection logic. To prevent this,
each resource can be given an attribute indicating
that it faces possible priority inversions or not. A
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task using a resource with the attribute enabled will
exercise the priority inversion detection and handling
logic whenever it attempts to lock the resource.

The priority inversion attribute of a resource may be
enabled or disabled at any time through the use of
the KS_defres() kernel service. Initially, all priority
inversion attributes of all resources are disabled.

Assuming that the attribute is enabled, RTXC treats
priority inversions in a straightforward manner. In
resolving the conflict described above, it must be
noted that it is not possible to preempt task B's
ownership of Resource R because it is not known
into what condition task B has placed the resource.
For example, Resource R may be protecting a
section of a database of process information into
which it has partially written some update
information. The update is incomplete at the time
task A preempts. For task A at the point of
resumption of CPU control, the database is in an
unknown state when it tries to lock Resource R.
Therefore, it would not be part of the solution
simply to grant ownership of the resource to task A.
Rather, task B must be allowed to continue to run
and to retain ownership of Resource R until it can
unlock Resource R with the knowledge that the
database being protected by the resource is in a
known state.

RTXC handles the priority conflict by temporarily
elevating the priority of task B to a level equal to
that of task A. The purpose of the action is to raise
task B's position in the READY List in order to
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grant it more execution time. The supposition is that
more execution time is all that is required for Task B
to complete its use of the resource and to unlock it,
making it available for the next task, presumably
Task A.

When task B completes the need for the resource, it
unlocks the resource by using KS_unlock(). RTXC
then reduces the priority of task B to the level where
it was when the priority inversion with task A
occurred. If task A, or any other task, had attempted
to lock Resource R by using either a KS_lockw() or
a KS_lockt() Kernel Service, RTXC would
automatically grant ownership of that resource to
the highest priority task waiting to lock it.

If task A used KS_lock() in its attempt to gain
ownership of Resource R, it would have to take
partial action itself in resolving the priority inversion.
RTXC will elevate task B to the same priority as
task A regardless of the Kernel Service used to
attempt the lock. However, task A will remain the
Current Task because KS_lock() cannot block the
requesting task if the state of Resource R is already
Locked. Instead, RTXC will return a value of
RC_BUSY from task A's call to KS_lock() and
continue the execution of task A as the Current
Task. In order to permit task B, in its elevated
priority, to become the Current Task, task A must
first give up control of the CPU.

One way it can give up control is to issue a
KS_yield() request. The result is that the
composition of the READY List will change from
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task A followed by task B to task B followed by
task A. The reversal makes task B the Current Task
and permits it to continue executing at the elevated
priority level.

The following code fragment demonstrates this
method of task A's handling a priority inversion.

while (KS_lock(RESOURCE_R) == RC_BUSY)
{
   If(KS_yield()==RC_NO_YIELD)/* yield to Task B */
      KS_delay(5/CLKTICK);  /* delay if Task B   */
                            /* not same priority */
                            /* as Current Task   */
}
/* at this point this task owns RESOURCE_R */

The while loop is used just in case task B becomes
blocked for some reason and task A once again
becomes the Current Task. If so, task A will
continue to yield until the external event blocking
task B occurs causing it to run once again.

In the example above, it is also seen that KS_lock()
does not block the requester on a failed attempt.
Consequently, there is no waiting task to which
RTXC can automatically pass ownership of the
resource when it is unlocked. Ownership of the
resource will not be gained until task A issues the
next KS_lock() request at the start of the while loop.

There is one final note of caution regarding usage of
resources. A task using a resource common to one
or more other tasks should not issue Kernel Service
requests to functions which result in the task
becoming blocked while it has locked the common
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resource. RTXC does not prevent such an
occurrence, but it is not considered good design as it
can lead to a resource being locked for extended
periods of time and, hence, to undesirable results.

For instance, if the KS_lockt() Kernel Service is used
by task A and the associated timeout period expires
before it gains control of the resource, RTXC will
automatically reduce the priority of task B to the
level at which it was prior to being elevated. It also
unblocks task A, inserts it into the READY List and
preempts task B. Once restored to control of the
CPU, task A must deal not only with priority
inversion but also with the fact that the timeout
occurred before the resource was unlocked. Such a
situation may be indicative of problems in task B or
that task B was waiting on some event that has not
yet happened. In any case, code in task A will have
to deal with sorting it out.
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MEMORY
PARTITIONS

RTXC supports a RAM memory management
concept which features the use of defined memory
partitions to prevent fragmentation. The system
designer may specify as many memory partitions as
are needed to accomplish the system's functions.
Memory partitions may be statically or dynamically
defined according to the needs of the application.
Each memory partition, also called a Map, contains
one or more blocks all of which are the same size.
Tasks allocate blocks of memory from various Maps
as needed to perform their assigned jobs. When
finished with a memory block, they release it by
freeing it to the Map from which it was allocated.

RTXC provides two basic Kernel Services to
perform the operations of allocation and freeing of
blocks from memory partitions. Additionally, three
variants of the allocation function are possible.

Memory Partition
Definition

RTXC supports both static and dynamically defined
Memory Partitions. Static memory partitions have
their attributes defined during system generation.
The number of dynamic memory partitions is also
declared during system generation. In use, dynamic
memory partitions are allocated and have their
attributes defined during runtime. Regardless of its
type, a Memory Partition must exist and all of its
attributes be defined in order for a task to make use
of it.
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The number of blocks defined in a Memory Partition
is limited only by the amount of RAM available. It is
not necessary that the number of blocks in a
Memory Partition be a power-of-two or any
particular number. All blocks in a Memory Partition
must be the same size and must be at least the size
of a pointer. However, blocks whose size is an odd
number of bytes may be less efficient on processors
that require at least 16-bit (word) access. You
should consult your processor's reference manual to
determine if odd number block sizes are efficient.

Static
Memory
Partitions

In keeping with the concept of predefinition, the
system designer defines all static Memory Partitions
during system generation using RTXCgen. Through
an interactive dialog with RTXCgen, the user
specifies the various attributes of each static Map
including its name, the number of blocks it is to
contain, and its block size. RTXCgen computes how
much memory to allocate and produces the C
structures and memory arrays to accommodate the
specification. After compiling the C code produced
by RTXCgen, the linking process establishes the
actual address of the RAM so that RTXC will know
where it is located.

Normal usage of static Memory Partitions keep their
attributes fixed during the life of the application.
However, RTXC does permit attribute redefinition
for a static Memory Partition through the use of the
Kernel Service KS_defpart(). If this capability is
employed, it should be done with caution.
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Dynamic
Memory
Partitions

Dynamically defined Memory Partitions are slightly
different. Some applications, while knowing the
number of Memory Partitions needed, defy accurate
specification of their sizes until runtime when
operating conditions are known. This leads to a
problem with RTXC's concept of predefinition. The
solution is for the system designer to specify
undefinable Memory Partitions as being dynamically
defined. The number of dynamic Memory Partitions
is specified via RTXCgen but no attributes about
them are given at that time.

When a particular need arises during system
operation for a dynamic Map, a task can create one
via appropriate RTXC Kernel Services. Allocation
of the Map control block is the first step in creating
a dynamic Memory Partition. The task issues a
KS_alloc_part() Kernel Service to allocate an
unused Map control block from the pool of free
Map control blocks.

Having successfully allocated the control block, the
task then must define the Map's attributes through
the KS_defpart() Kernel Service. The dynamic
Memory Partition is then usable as though it had
been statically defined.

The task may choose to combine allocation of the
dynamic Map control block and attribute definition
into a single Kernel Service request,
KS_create_part().
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If a dynamic Memory Partition no longer has utility
to the application, it may be released. The
KS_free_part() Kernel Service will release the Map
control block to the pool of free Map control blocks.
You should exercise care to ensure that all of a
Map's memory blocks are freed to the Map prior to
using KS_free_part(). Release of a dynamic Map's
control block could leave any allocated memory
blocks in limbo and potentially lost.

Number of Memory
Partitions

The number of RTXC Memory Partitions is
determined by the system designer according to the
needs of the application. You may define the size of
the storage quantum of type MAP. An 8-bit
quantum is normally sufficient, permitting up to 255
Memory Partitions regardless of type.

Through RTXCgen, you must define each static
Memory Partition and the number of dynamic
Memory Partitions, DNPARTS. RTXCgen uses
DNPARTS to generate an equal number of Map
control blocks which form the free pool from which
dynamic Map allocations or creations are made.

The total number of Memory Partitions may be
found by adding the number of static Maps,
NPARTS, to DNPARTS.
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Memory Partition
Organization

A Memory Partition is an area of RAM consisting of
one or more blocks of the same size. Each Memory
Partition consists of a Partition Header and the
Partition Array. Collectively, they are referenced by
a single Memory Partition identifier.

The Partition Header contains information needed
by RTXC to manage the Memory Partition including
the size of a RAM block and a pointer to the next
available block. The Header may also contain other
information about the usage of the Partition Array.

The Partition Array contains the actual memory
blocks. While Memory Partitions may be either
statically or dynamically created, the organization of
the Memory Partition is the same. RAM blocks in
the Memory Partition are contiguous and are linked
together in a singly linked list.

Memory Partition
Attributes

Each Memory Partition serves some purpose needed
by the application and thus has unique attributes.
These attributes are stored in the Map Control
Block for use by RTXC during kernel services
related to the Map. The attributes include:

• Memory Partition Identifier

• Block Size
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• Number of Blocks

• RAM Area Address

Memory
Partition
Identifier

The system designer may specify the size of the data
quantum needed for a Memory Partition identifier.
These identifiers are numerical values of type MAP.
The size of a value of type MAP defines the
maximum theoretical number of Memory Partitions
in a system. An 8-bit signed quantity permits up to
127 Maps.

The Partition, or Map, number is its position in the
list of all Memory Partitions. There is no special
significance given to a Memory Partition identifier.

Statically defined Memory Partitions will have
identifiers between 1 and NPARTS inclusively, where
NPARTS is the number of static Memory Partitions.
Identifiers for dynamic Maps will range from
NPARTS+1 to NPARTS+DNPARTS inclusively,
where DNPARTS is the number of dynamic Memory
Partitions.

Block Size The block size of a given Memory Partition is fixed
and all blocks in that Map are initialized as having
that size. Once defined, the Map's block size may
not be varied. RTXC imposes no restriction on the
size of a block other than it must be at least the size
of a data pointer.

Number of
Blocks

Each Memory Partition is created with a given
number of fixed-size blocks. The product of the
block size and the number of blocks determine the



  FUNCTIONAL OVERVIEW RTXC User's Manual

  3-78 Copyright  Embedded System Products, Inc.

amount of RAM needed for the Map.

RAM Area
Address

The address of the RAM area used for the blocks in
a static Memory Partition is defined by the linker.
The RAM area address for a dynamic Map is defined
at runtime.

Using Memory
Partitions

The RTXC initialization procedure links all of the
blocks within each static Map. The blocks of
Dynamic Memory Partitions are linked by the
KS_defpart() or KS_create_part() kernel services
when the Map is created. During operation, a
request to allocate a memory block returns the
address of the next available block in the map. When
the block is released, RTXC puts it back into the list
of available blocks so that it will be the next block to
be allocated.

RTXC also makes provisions for empty Memory
Partitions. Tasks which attempt to allocate memory
from an empty Map are informed of the conflict.

RTXC provides one basic Kernel Service for
allocating memory, KS_alloc(), and one function for
releasing memory, KS_free(). Three possible variants
of the basic allocation function, KS_allocw(),
KS_alloct(), and KS_ISRalloc() also provide kernel
level support for handling empty Map conditions.
The last variant, KS_ISRalloc(), is used by interrupt
service routines to allocate a block of memory.
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Allocation of a memory block, if successful, always
yields the address of the allocated block. The task
uses that address as a pointer to the block. The
pointer to the block also serves as an argument for
the KS_free() Kernel Service when it is time to
release the block.

When using dynamic Memory Partitions, you may
use a static area for the RAM or you may choose to
allocate memory from the heap at runtime. The latter
case should be used with caution as improper use of
the heap can cause memory fragmentation. A third
technique for acquiring the RAM needed for a
dynamic Memory Partition is to allocate a RAM
block from an existing Map.

This last technique can be quite powerful as it
permits a nested definition of a RAM block. For
example, a 16K byte block from a static Memory
Partition can be allocated and used to define a new
dynamic Map having eight blocks of 2K bytes each.
In turn, one of those 2K blocks could be allocated
and used to define yet another dynamic Memory
Partition having eight 256 byte blocks. The
subdivision can proceed to whatever depths you
need for your application without the downside of
fragmentation that exists with the second technique
above which uses the heap.

Allocating
Memory

The basic Kernel Service to allocate a block of
memory from an RTXC Memory Partition is
KS_alloc(). If there is a block available in the given
Map, RTXC will allocate it and return a pointer to
it. If there are no free blocks in the Map, RTXC will
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return a value indicating the empty Map condition.
The task will have to recognize the special return
value and then deal with the situation with an
appropriate program segment. KS_ISRalloc()
operates exactly like KS_alloc() except it is intended
for use by interrupt service routines instead of by
tasks.

The use of KS_allocw() operates exactly like
KS_alloc() as long as there are free blocks to
allocate. However, when the given Map is empty,
the Kernel Service does not return a value but
instead blocks the requesting task, removes it from
the READY List, and adds it to the Map's list of
waiters. Waiting tasks are inserted into the waiter list
in descending order of their priorities. The Map's
highest priority waiting task will remain blocked
until another task frees a memory block to the Map.
When a block becomes available, it is allocated to
the waiting task. The task is resumed with RTXC
returning the pointer to the newly allocated block.

KS_alloct() operates exactly like KS_allocw()
except that the duration of the wait is limited by a
user defined timeout period. Instead of waiting
indefinitely for a block, the task will wait until either
a block becomes available or until the timeout
expires. If the former, KS_alloct() returns the
pointer to the allocated block and resumes the
requesting task. If the timeout occurs, the requesting
task resumes with a return value from KS_alloct()
indicating the timeout condition. The task must then
recognize the condition and deal with it in a special
code segment.
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Freeing
Memory

RTXC provides one service to release a previously
allocated block of memory, KS_free(). There are no
variants of the KS_free() function. The Current Task
need only provide the Memory Partition identifier to
which the block will be released and the pointer to
the block. RTXC makes no attempt to verify that the
block was originally allocated from the designated
Map receiving the freed block; so care must be taken
lest the maps become corrupted with blocks of
different sizes.
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TIMERS An RTXC system is usually configured with a time
base using some periodic interrupt on the target
processor as a clock. The clock permits task control
on a timed basis.  RTXC uses a generalized scheme
using one-shot and cyclic timers in conjunction with
semaphores. Multiple timers are managed
simultaneously using an ordered list of pending timer
events. Regardless of their number, the time to
service all active timers is fixed.
A timer for an event is inserted into the active timer
list in accordance with its duration. Insertion uses a
technique that puts the timer with the shortest time
to expiration is at the head of the list. RTXC allows
one timed event to be co-terminous with another
timed event. Kernel Services for scheduling and
cancelling timed events are an integral part of the
executive.

Timer Definition RTXC uses two types of timers--General Timers and
Timeout Timers. General Timers time system events
such as the periodicity of a task's cyclic operation or
the operation of some mechanical device in the
physical process. Timeout Timers are a special type
of timer used in limiting the duration of certain
Kernel Services in blocking the requesting task.

It is during the system generation process that the
system designer defines the clock interrupt
frequency and the number of timers. The number of
timers defined is the number of general timers
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needed by the application. Timeout timers are not
included in the set of defined timers because they are
allocated via a separate mechanism.

At the end of the system generation process,
RTXCgen produces an array of timer blocks called
the Free Timer Pool. RTXC will create a linked list
of the timer blocks in the Free Timer Pool during
system initialization. General Timers are allocated
from the Free Timer Pool by removing the first
available timer block in the list. Similarly, timer
blocks are freed by inserting them at the head of the
linked list.

Timer Structure Both General Timers and Timeout Timers have a
common component of the remaining time counter.
General Timers have an additional component in a
recycle time. The remaining time counter is the
amount of time remaining before the timer expires.
A recycle count, if non-zero, defines the amount of
time with which to reset the timer when the current
time remaining expires. RTXC time period values
usually have a maximum length of 16-bits or 32-bits
depending on the target CPU.

If only the initial period is defined, the timer is said
to be a one-shot timer. If it has an initial period and a
non-zero cyclic period defined, the timer is cyclic.
The initial period may or may not be equal to the
recycle time. Only General Timers may be either
cyclic or one-shot. Timeout Timers are one-shot
timers only.
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Each General Timer also has a semaphore associated
with its expiration event. The association of the
semaphore to the timer expiration is made when the
task issues a Kernel Service request to start the
timer. The semaphore is signaled when the timer
expires.

Timer TICKS The basic time unit used internally by RTXC is a
TICK. A TICK defines the amount of time between
interrupts generated by the system clock, or
equivalently, the period between clock interrupt
service requests. The frequency and Tick granularity
of the system clock is hardware dependent and is
usually defined during system generation.

Timer values are equivalent to the number of clock
Ticks required to form the needed amount of real
time.  For example, if a system clock operates at 64
Hz (15.625 msec per Tick), a one-shot timer of 2
seconds has an initial period specification of 128
TICKS (2 x 64).

All timed event operations and data structures are
handled by RTXC. While a timer is active, a task
should not attempt to manipulate any of its control
or data structures.

Using General
Timers

General Timers are suitable for general purpose
timing, including such uses as timing events and
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establishing periodic task activation. General Timers
may be one-shot or cyclic and may be allocated,
started, restarted, stopped, and freed.

RTXC requires that a timer be allocated before it
can be used. Once allocated, it remains so until it is
released by the owning task. While it is allocated, it
may be started and restarted as many times as
required by the application. And more than one
timer may be allocated to the same task at the same
time. When the task no longer needs a timer, it may
release the timer to the Free Timer Pool where it can
be reused by other tasks.

General
Timer
Allocation

RTXC uses a concept of allocation of timer blocks
prior to their use. This provides for very
deterministic operation in that a task attempting to
allocate a timer knows immediately whether the
operation was successful. Without preallocation, a
task could attempt to perform a timer management
operation at a critical point and fail because a timer
was unavailable.

The preferred design for an RTXC task using timers
is to have it allocate all of its needed timer blocks
before starting the main body of the task. Allocation
prior to use guarantees the task that the necessary
system resources will be available when needed. An
added benefit of timer allocation prior to main body
operation is that an unsuccessful allocation attempt
can indicate the presence of a problem elsewhere in
the system.
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Allocation of a timer is accomplished by unlinking
the next available timer from the Free Timer Pool
and returning its handle to the requesting task.
KS_alloc_timer(), the RTXC timer allocation Kernel
Service, performs that operation. The function does
not create the timer nor does it start a timer. Instead,
a successful allocation returns the handle of a timer
block to the Current Task.

Having the timer handle, the task may use it in
subsequent timer management Kernel Services. A
task may allocate and use more than one timer
concurrently. Any task using timers should maintain
the handle of each timer block allocated until such
time as the block is to be freed, if ever.

Even with a design which uses allocation prior to
use, a condition may arise in which there are no
timer blocks in the Free Timer Pool when a new
timer allocation attempt is made. This condition is
indicated by the function value returned from the
KS_alloc_timer() Kernel Service. It is the
responsibility of the task to deal with the situation
should it occur.

Automatic
Timer
Allocation

The concept of timer block preallocation prior to
first use is the preferred method. However, it
requires an explicit request which may not be
acceptable for all system designs. RTXC provides
for an alternative method of timer allocation by
which the allocation of a timer is implicit. Under
ordinary circumstances, this technique is just as
good as the preferred method. Nevertheless, there
are some caveats associated with its use.
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The function KS_start_timer() is used to start a
timer whose handle is provided as an argument to
the Kernel Service request. But, RTXC allows
KS_start_timer() to be called in a manner to indicate
that RTXC is to allocate and create and start the
timer. This technique is referred to as automatic, or
implicit, timer allocation.

If KS_start_timer() is successfully used in
automatically allocating a timer, it will return the
handle of the timer to the requesting task. Likewise,
a failure to allocate a timer will cause the Kernel
Service to return a function value indicating that no
timer blocks were available. A task using this Kernel
Service with automatic timer allocation should be
able to detect successful or failed attempts. For
successful attempts, the task should maintain the
handle of any timer block allocated implicitly.

When using automatic timer allocation, care must be
taken to prevent a task from unwittingly misusing
KS_start_timer(). Improper use would include using
the same storage variable to save an allocated timer's
handle while making repeated calls to the function.
Each call would cause the unrecoverable loss of the
timer handle from the previous call. Eventually this
kind of improper use will exhaust the Free Timer
Pool as evidenced by a NULL handle being
returned. If the task is not monitoring the returned
value from KS_start_timer(), it might try to use the
returned NULL handle later on.
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Reading
Time
Remaining

RTXC provides the services to read the time
remaining on any active General Timer provided the
timer's handle is known. The KS_inqtimer() Kernel
Service will return the amount of time remaining on
the object timer in units of TICKS.

Stopping
and
Restarting

Sometimes it is necessary to abort an active timing
operation prematurely. RTXC permits this through
use of the KS_stop_timer() Kernel Service. The
Current Task must provide the handle of the active
timer to be stopped as part of making the request. If
the task attempts to stop an inactive timer, nothing
happens except that RTXC returns a value which
indicates that the specified timer was inactive. The
task can check for that occurrence if it is important.

Another use of the active timer's handle is found
when attempting to change the expiration time of an
active timer. The KS_restart_timer() Kernel Service
performs such an operation when called with the
active timer's handle and the new duration of the
initial timer period. The timer is stopped at the time
of the function request and the new time value
replaces whatever remains in the remaining time
field.

Freeing
Timers

A task may determine at some point that it no longer
needs a General Timer it had previously allocated. A
good design philosophy is to release the unneeded
timer. RTXC provides a simple Kernel Service,
KS_free_timer(), for doing that. The task need only
provide the function with the handle of the timer
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block to be released and put back into the Free
Timer Pool.

Using Timeout
Timers

Another type of timer used by RTXC is the Timeout
Timer. These are timers which are used by tasks
which invoke Kernel Services using timeouts.
Timeout Timers, unlike General Timers, need not be
allocated and released by the tasks that use them.
Instead, RTXC performs those actions automatically
as part of its operations. Only one Timeout Timer
will be allocated to a task at a time because a
timeout may only occur for one Kernel Service at a
time.

Timeout
Timer
Allocation

Beginning with RTXC V3.1, the handling of
Timeout Timers was changed from the methods used
in previous versions. In RTXC V3.1 and later
versions, the processing of Timeout Timers is
completely automatic and transparent to the user.
The Kernel Service KS_alloc_timeout() will no
longer be included in the API of RTXC after V3.1.
If you are a user of RTXC V3.0, you may eliminate
all uses of KS_alloc_timeout() as it is no longer in
the RTXC API.

Beginning with RTXC V3.1, Timeout Timers are
allocated on the stack of the Current Task when the
task requests Kernel Services which need to block
the task only for a limited time.
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Freeing
Timeout
Timers

The area on the task's stack used by the Timeout
Timer is released automatically by RTXC when
either the expected event occurs or the timeout
expires. Either situation will cause the waiting task
to resume.

The KS_free_timeout() Kernel Service is no longer
included in the API for RTXC V3.2. It was present
in RTXC V3.1 only for purposes of compatibility
with RTXC V3.0. It may be omitted from the RTXC
API if prior compatibility is not a concern.

Timer Interrupts When there is an active timer, each interrupt of the
system clock causes the active timer values to be
reduced by one TICK. When a timer expires, its
timer block is removed from the Active Timer List
and the semaphore associated with the timed event
is signaled.  A task waiting on the event will be
unblocked and inserted into the READY List if it
has no other blocking conditions. The timer block is
set to an inactive state but is not returned to the Free
Timer Pool. It remains available to the task for
subsequent timer management operations. A context
switch can occur if the unblocked task is of higher
priority than the interrupted task.
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SYSTEM TIME RTXC maintains system time as a 32-bit datum of
type time_t that is incremented once each second
after the system is initialized. In this manner, a very
deterministic means of maintaining time-of-day and
date is available. The calendar may be defined with
the current date and time expressed as the elapsed
number of seconds since January 1, 1970. If defined
with a valid date on or after January 1, 1970, the
calendar is accurate through the year 2037. It is not
required, however, that the calendar be defined with
a date and time in order for RTXC to operate
properly.
The RTXC distribution provides two functions,
date2systime() and systime2date(), which can
convert standard calendar data (Year, Month, and
Day) and clock data (Hours, Minutes, and Seconds)
to the system time of type time_t and back again.
These functions are general utilities and are not part
of the RTXC API.

Conversion to
System Time from
Calendar Date

Function date2systime() is provided to convert a
calendar date and clock data to the internal system
time of elapsed seconds since January 1, 1970. The
function requires a single argument which is the
address of a structure containing:

• Year

• Month
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• Date

• Hours

• Minutes

• Seconds

• Daylight Savings Time Flag

Conversion from
System Time to
Calendar Date

Function systime2date() converts the internal system
time value to the corresponding calendar date and
time in terms of year, month, day, hours, minutes,
and seconds. The function requires an argument that
is the address of a structure of type time_tm
containing the calendar and clock members:

• Year

• Month

• Day

• Hours

• Minutes

• Seconds

• Day-of-Week
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The function returns the numerical values for the
calendar as year, month (1-12), day (1-31), and day-
of-week (1-7, where Monday = 1). For clock data,
the function returns hours (0-23), minutes (0-59),
and seconds (0-59).
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INTERRUPT
SERVICE

RTXC also provides for a generalized interrupt
service scheme. Because Interrupt Service Routine
(ISR) code is specific to both the particular device
and the method of use in the application, it must be
provided by the User.  Fortunately, the rules for
writing RTXC interrupt service routines are quite
simple.
While the hardware specifics of interrupt recognition
and acknowledgment vary from CPU to CPU,
software handling of interrupts is more consistent. In
RTXC, there are three basic parts to all ISRs:

• Prologue

• Device servicing

• Epilogue

The prologue begins the processing of the interrupt.
The device servicing section deals with the particular
device. The epilogue is the end action performed to
finish interrupt processing and continue with the
application. More complete descriptions of these
sections follow in the paragraphs below.

Prologue When the ISR is entered after acknowledgment of
the interrupt, it begins a code section called the ISR
prologue. The prologue is usually written in
assembly language and may be either straight-line
code or a macro. Whichever the case, it is a normal
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part of the RTXC distribution. Unless it is necessary
to perform some additional operation during an ISR
prologue, this code, as distributed, should not
require modification.

The purpose of the ISR prologue code is to save the
processor context plus any extended context
necessary to preserve the interrupted environment.
The processor context is stored on the task's stack
while any extended context is stored in a special
area. The state of the CPU interrupt facility may or
may not be enabled throughout this storage process
depending on the specifics of the CPU.

Device Servicing After storing the context, the ISR prologue transfers
control to the main function of the ISR to service
the interrupting device. This is usually a C function
which performs some device specific operation in
order to clear the source of the interrupt request. As
it deals with application specific devices, this code
must be furnished by the user.

All device servicing functions in RTXC require one
argument, a pointer to the stack frame of the
interrupted process. Because the prologue is written
in assembly language and the device servicing
function is written in C, the prologue code must pass
the stack frame pointer in a manner consistent with
the conventions of the compiler for argument
passing between C and assembly language. The
device service function does not use the argument in
its operation but only passes it to the ISR exit logic.
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As part of its operation, it is quite common that the
device servicing function will need to signal one or
more semaphores associated with the interrupt in
order to announce the event to the application tasks.

RTXC provides two special services to deal with
commonly encountered requirements of interrupt
processing. The function KS_ISRsignal() should be
called to signal a semaphore from the ISR while
KS_ISRtick() provides RTXC required processing
for a clock tick.

An ISR should not make calls to RTXC Kernel
Services, because the kernel is not reentrant and
calls from an ISR to kernel services other than
KS_ISRsignal(), KS_ISRtick(), or KS_ISRalloc()
will yield unpredictable results.

When its device specific operations are complete,
the device servicing function indicates that fact by
calling the fourth special interrupt service function,
KS_ISRexit().

NOTE: The function KS_ISRexit() serves the same
purpose as function isrc() in previous versions of
RTXC. Whatever is said about KS_ISRexit() in this
manual may also be said about isrc(). However,
beginning with RTXC V3.2, isrc() is no longer
included in the RTXC distribution.

One of the arguments to the function provides a
convenient way of combining the exit logic with
signaling a semaphore associated with the interrupt.
KS_ISRexit() will also arbitrate the priorities of any
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tasks made Ready by that signaling. When
KS_ISRexit() is finished, the highest priority Ready
task will be at the head of the READY List.
Function KS_ISRexit() returns a pointer to the
stacked context of the highest priority Ready task.
Having that datum, the next step in an Interrupt
Service Routine is to enter the ISR epilogue.

Epilogue The ISR epilogue code, like the prologue, is usually
in assembly language. It sole function is to restore
the context of the highest priority Ready task and
grant it control of the CPU. The highest priority
Ready task may or may not be the task that was
interrupted. Code for the ISR epilogue is included in
the RTXC distribution and should not require
changing.

A crude code model of an ISR for UART
input/output including the use of KS_ISRexit() and
KS_ISRsignal() is shown below. In the example,
CONISEMA and CONOSEMA are semaphores
for the character input and output events
respectively.
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/* Interrupt service example - UART output
 * KS_ISRexit() only allows for signaling a single
 * semaphore per interrupt.
*/
/* C level UART device service function */
FRAME *uartc(FRAME *frame)
{
   /* test source of interrupt */
   if (USART_STATUS == TX_BUFF_EMPTY)
   {
      /* output DONE */
      /* clear interrupt logic goes here */

      /* exit and signal char output semaphore */
      return(KS_ISRexit(frame, CONOSEMA));
   }
   else  /* if here it is USART input */
   {
      /* do some more processing */

      KS_ISRsignal(CONISEMA); /* signal event */
      /* followed by still more processing */

      return(KS_ISRexit(frame,0)); /* get out */
   }
}

TICK Processing Most real-time systems employ a device which
interrupts the CPU at regular intervals to provide a
time base to the system. Naturally, there are many
ways to implement such a timing device, or clock,
but the design is immaterial to the use of RTXC. It is
sufficient to say that such a device may exist in an
RTXC-based real-time system. Because of the
diversity of hardware designs for such a timer, it is
possible to conclude that there would be at least an
equal number of ways to handle a clock interrupt.
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That's the bad news. The good news is that the way
that the interrupt needs to be handled with respect to
the needs of RTXC is quite regular. In recognition of
that regularity, the RTXC distribution includes a
special purpose function, KS_ISRtick(), that
performs all of the necessary processing required for
a clock interrupt (i.e., a TICK). There would be only
one instance of this function's use in the system - in
the ISR of the driver for the system's periodic time
device.

The function requires no argument as it is dealing
with known objects but it returns a single value to
indicate that a timer expired or not. The user may
make use of this value if desired. The clock ISR
(which called KS_ISRtick()) should then call
KS_ISRexit() to conclude its processing. The RTXC
distribution includes a prototype driver for such a
system clock.
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TUTORIAL

_____________________________________

INTRODUCTION This section is intended to answer some of the
questions about using a real-time kernel and about
using RTXC specifically. Due to the focus on
RTXC, it is not an exhaustive treatise on the subject.
Most users of RTXC already have some experience
with this type of system software but a number of
users are not well versed in the inner workings and
hidden mechanisms of real-time system design and
multitasking. It is for this last group that this section
is targeted. Hopefully, more experienced users may
also find valuable information herein as well.

The tutorial makes the assumption that you have a
working knowledge of application design using
multitasking and real-time kernels. We hope that you
have also read at least sections 2, 3, and 7 of this
manual and have an understanding of how RTXC
works. If that is not the case, you probably ought to
stop right here and read those sections before
continuing.
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MECHANICS What do you do after you have opened the package?
So it sounds like a stupid question, but we're going
to assume nothing.

Backup The first thing you should do after opening the
package is to make a backup of the RTXC
distribution diskette. You may do that for archival
purposes only and you should keep the backup copy
in a safe place. You will need a high density 5¼" or a
3½" diskette to make the backup.

The RTXC distribution diskette is a high density
medium written in MS-DOS format. You may
perform the copying by using the MS-DOS COPY
command or a third-party copying utility program.
After you have made your backup copy, be sure to
label the diskette and include the Diskette Serial
Number (Diskette S/N) that is on the label of the
RTXC distribution diskette.

Now that you are protected, you need to install
RTXC on your development system.

Installing RTXC The entire RTXC package is contained on a single
high density 5.25" or 3.5" diskette. The files are not
compressed, so there is no need for any special
decompression programs. The utilities on MS-DOS
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are sufficient. But before going too far, you should
take a moment and read the Customer Letter that
accompanied your package.

Binding
Manual

One of the things the Customer Letter mentions is
the RTXC Binding Manual. It is located on the
RTXC distribution diskette in the root directory in a
file named BINDING.TXT. Remember, the RTXC
User's Manual is a general document that is generic
to all processor and compiler combinations. It is the
Binding Manual that holds specific information
about the processor and compiler.

BINDING.TXT is a preformatted file with
embedded form feeds so that it can be printed easily.
It is formatted for a standard 8½" X 11" page size
but it should also work with a standard A4 page size
as well. You should print the file and examine it
before proceeding with the installation.

Copying the
RTXC Files

The Binding Manual provides specific information
about copying the files from the RTXC distribution
diskette to the working disk of your development
system. You may modify the procedures in whatever
way you need in order to be compatible with your
particular development environment.

The normal procedure of copying assumes that the
destination disk is the C: drive. The copy process
produces a root directory entry on the C: drive
named RTXC. The root directory in turn contains
three subdirectories named KERNEL, DEMO, and
RTXCGEN. They contain, respectively, the RTXC
kernel source code, the source code for a
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demonstration application, and the RTXC system
generation utility program RTXCgen.

Make whatever changes you need for your
development environment and proceed to copy the
files from the RTXC distribution diskette to your
hard drive.

Confidence Test Once the RTXC files are copied to your
development system, you should verify proper
installation. This is a fairly simple procedure because
the RTXC distribution includes Make files for each
subdirectory. You should have confidence in your
installation if you can build the entire RTXC system
and the demonstration application without any
errors. You may or may not have the proper target
hardware environment on which to test the
demonstration application. But if you can build it,
you have set up the development environment
properly so that work on your actual application
should be quite smooth.

Make Files Each of the subdirectories, KERNEL, DEMO, and
RTXCGEN, has at least one Make file included as
part of the standard RTXC distribution. The Make
file is usually written to be used with the Make
facility in both the Microsoft C compiler V6.0 and in
Borland's C++ V3.1 compiler.

The distributed Make files assume that you have
installed the RTXC files on the C: drive. If you have
used another disk drive, you should modify the
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Make files so that the paths to the RTXC files reflect
your actual installation.

The Make files further assume that you have
installed your C compiler in the manner described in
the Binding Manual. The path of the compiler
reflects the normal results of following the stated
installation procedure of the compiler vendor. If
your installation uses a different path, you will need
to reflect those differences in the path descriptions
used in the Make files.

If you are using a different Make utility that is
incompatible with the distributed Make files, you
must create your own Make files for whichever
Make utility you are using. Once you have done so,
building the distributed demonstration application
should provide you with sufficient confidence that
your installation is correct.

Assuming you have the proper compiler path, that
you have stored the RTXC distribution files, and
that the Make files are compatible with your Make
facility, you can now proceed to build the RTXC
demonstration application.

Of course, if you don't use a Make utility, you can
create a batch file and do the same thing. The benefit
of using the Make utility is that it will help you by
compiling only those files that have changed. Later
on, when you are deeply into your own application
development, you may find that the Make utility can
improve your system build turnaround time.
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Building
the Demo
Application

You have your Make files or your batch files ready,
and now you are ready to build the demonstration
application. The procedure is simple. Set the
working directory to the KERNEL subdirectory and
invoke your Make utility for the Make file in that
subdirectory. After that operation completes, select
the DEMO subdirectory and make it.

If the DEMO Make file completes normally, you
have just built the demonstration application
successfully. If there is an error, you should ensure
that you have the proper paths to the compiler and
the RTXC files and that your Make file is indeed
compatible with your Make utility. Correct any
errors you find and try it again. Continue this
process until you get a successful completion.
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DEMONSTRATION
APPLICATION

The demonstration application is a simple set of
tasks that can run on some system containing the
target processor you have chosen. If you have the
specific target hardware, you should be able to load
the demonstration application and see it run.
However, if your target board is different, seeing the
demonstration application actually operate may
require further work.

While the demonstration application is simple, it
nevertheless incorporates much of what you must
have in your specific application. If you understand
what is in the demonstration, you can translate that
knowledge into your own particular requirements.
This part of the tutorial is intended to do just that.

Directory Contents Why have three directories for such a simple
application? The RTXC distribution files are divided
into the three subdirectories for the specific
purposes of promoting ease of use, maintainability,
and improving debugging.

The KERNEL subdirectory contains those files
which define RTXC and how it is to be built. Once
you have it configured the way you need and
compiled into the RTXC Kernel Library, it does not
need changing very often. Because it includes
nothing about any particular application, the kernel
is a reasonably constant element in an application.
The segregation of the kernel also promotes its
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maintenance by there being only one copy of it on
the system. Maintenance reports and updates need
only be made in one directory.

The DEMO directory contains all of the files that are
specific to the given application, in this case the
demonstration. The content of DEMO can be copied
to another directory, there to serve as the starting
point for a particular application. As it contains only
application specific files, you need only to add new
application files, edit the existing kernel object
definitions, modify the existing device drivers or add
new ones, and you have your own directory for a
new application.

The RTXCGEN directory is likely to change the
least of all. RTXCgen is the system generation
utility, and it exists not only in source form but also
as an executable file, RTXCGEN.EXE. It is usually
sufficient to run RTXCGEN.EXE as distributed and
never make any changes to it. However, if you want
to make some changes, you have the complete
source code with which to work.

Elements of the
Demonstration

The function of the demonstration application is to
have two tasks outputting brief messages at different
times. One task outputs its message once per
second. The second task performs its function once
every 5 seconds. Assuming that the output is to
some sort of display device, the visible output shows
an endless cycle of five repetitions of the first
message followed by one message from the second
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task.

On the surface such functionality appears trivial but
underneath there is more than meets the eye. There
is the RTXC real-time kernel providing not only the
library of real-time services but also the architecture
for the application. And there are certainly the two
tasks which perform the periodic message output.
But there is more.

For example, there must be some mechanism for
keeping track of time because both tasks operate
cyclically with respect to time. There must also be
some sort of support for a serial output port through
which the various messages are transmitted. Both
time and serial output involve the handling of
interrupts. Thus, the supporting code must be able
to respond to and process asynchronous and
synchronous external interrupts.

Another piece of executable code that must be a part
of the application is the startup code. This is a piece
of code, often written in assembly language, whose
charge it is to start up the processor and perform
low level or processor specific initialization
functions.

Lastly, there must also exist a set of kernel objects
which define to RTXC its environment for this
particular application. While these definitions are not
specifically executable program code, they are
produced by RTXCgen, the system generation
utility, as C source code modules. They are compiled
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and linked with other object modules just as though
they were actual executable code.

Reduce all of these various elements to object form
by compilation or assembly. Then link all of their
object modules together, i.e., kernel, application
tasks, device drivers, kernel objects, and startup
code and you get the application as an executable
module. Now you have the total picture.

Let us visit these elements and see what makes them
work and what may be necessary to adapt them to
your particular use.

RTXC Kernel The RTXC Kernel Library was made during the
initial building process when you did the confidence
test. It was compiled according to a given set of
Configuration options found in a C header file
named RTXCOPTS.H. The header file is also found
in the KERNEL subdirectory. But we will save a
more complete discussion of this file and its role
until later in the tutorial. The kernel library always
has the name LIBRTXC but its extension may vary
according to conventions used by the librarian
utilities of different compilers. Usually the extension
is LIB making the complete name of the library
LIBRTXC.LIB. Consult your C compiler user's
manual for the correct extension name.

Startup Code The startup code is application and processor
specific. It is usually found in a file named
START.*, where * is the file extension specific to
the compiler or assembler in use. Most compilers
targeted for embedded applications include startup
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code that can be modified for a user's specific
application. The distributed DEMO directory file
START.* contains that same code, when it is
available,  but modified to include any RTXC
specific startup requirements and definitions. If you
don't find a file named START.* in your DEMO
directory, the file may have another name. You may
check the binding manual for the name of the startup
code file in your distribution if one exists. In some
cases the startup code distributed with the compiler
does not require changing so it is not included in the
RTXC distribution.

Kernel
Objects

The demonstration application needs definitions of
its environment in order for RTXC to know what to
do. These definitions are known collectively as
kernel objects. We defined a set of kernel objects
specifically for the demonstration application using
the system generation utility, RTXCgen. The output
from that exercise is found in the DEMO directory
in three forms: 1) kernel object definition files, 2)
kernel object C files, and 3) kernel object header
files.

Kernel object definition files have the extension
DEF and contain the definition of each type of
kernel object defined during system generation.

Kernel object C files contain the C data structures
and related source code translations of the kernel
object definition files. These files use the extension
of C.
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Kernel object header files use the file name extension
of H and contain definitions of the names of the
various static objects defined in the kernel object
definition files.

The three types of kernel object files are all related,
and that relationship is evidenced by the actual
naming of the files. All of the files have the same file
name; only the extensions change. There are seven
such files and their names are:

• CCLOCK - Clock (periodic timer) objects

• CMBOX - Mailbox objects

• CPART - Memory partition objects

• CQUEUE - Queue objects

• CRES - Resource objects

• CSEMA - Semaphore objects

• CTASK - Task objects

Clock
Driver

The ability to handle a periodic interrupt for the
purpose of time management, while actually not
necessary for RTXC to operate, is a customary
component of a real-time system. When it is used, as
in the demonstration application, it is an important
component; so let's go into it in enough detail that
you understand how it works and what you must do
if you use a different interrupt source than that used
by the demonstration.
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In RTXC, this component is called a clock driver
and is part of the DEMO directory as a file named
CLKDRV.C. The clock driver may contain a device
initialization function which sets up the clock
according to the clock frequency (CLKRATE) and
tick rate (CLKTICK) defined during system
generation. This is not always the case as there are
some microcontrollers that must have the periodic
timer on the chip initialized within a specified
amount of time following a reset condition. (This is
one reason the clock driver is in the DEMO
directory - it is application specific.)

The clock driver is divided into two parts: an
interrupt servicing function, and an interrupt service
prologue. In CLKDRV.C, you will find the C
interrupt servicing function of the clock driver. This
device servicing function for the clock ISR is named
clkc() and is called by the interrupt service prologue.
The function, clkc(), takes care of servicing the
actual interrupt caused by the periodic timer device.
That code is very hardware dependent but quite
simple in its operation. Basically all it does is to clear
the interrupting device and then call KS_ISRtick() to
increment the RTXC tick counter Then, by calling
KS_ISRexit(), clkc() returns to its caller which is the
interrupt service prologue.

The interrupt service prologue is written in assembly
language because it must deal with the specifics of
the particular processor; e.g., saving the processor
context, ensuring that the proper stack is being used,
etc. You may see the prologue written as an
assembler macro or it may be straight instructions.
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All RTXC distributions have an assembly language
file, usually named RTXCASM.*, where the *
represents the extension for an assembly language
file compatible with the assembler being used, that
contains the interrupt service prologue.

Whatever is the case on your distribution, it would
be good advice not to change that code. The
interrupt service prologue deals with the processor,
and it is very specific. The interrupt servicing
function handles the actual interrupt but is often
completely independent of the processor.

To make a new clock driver for your application,
you need only to change the function clkc() to
handle whatever you are using as the source of your
system's periodic interrupts.

Serial I/O
Driver

A serial I/O port is often utilized by real-time
applications to receive and transmit information, and
a serial I/O driver is employed to handle those
functions. A serial driver usually has one task for the
receive (input) operations and another for transmit
(output) duties. However, due to various
implementations of serial ports in hardware, there
may be one or two interrupt service routines
required.

You should keep in mind during this tutorial and
while examining the related source code that these
drivers may not suit your application needs. Indeed,
they are rather simple in their behavior and it is quite
likely that you will need to make modifications to
them. But take them for what they are, prototypes
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or code models for your own drivers. Remember,
the drivers you need are specific to your
application's requirements, and only you know what
they are. What you get with the RTXC
demonstration is a good look at how a working
driver operates, how it uses RTXC kernel services,
how interrupts are serviced, and how the whole
thing is put together to form a working component.

Let's use the output side of the serial I/O as our
focus in this tutorial as we know it must be present.
Although the demonstration requires only the
functions of the output driver, the input driver is
often included.

The organization of a serial I/O driver in the
demonstration application is much like that for the
clock. In fact, you will see the same organization in
all RTXC device drivers and that makes it simple to
write one and get it installed quickly. There is a task
portion, an interrupt servicing function, and an
interrupt service prologue. Because you should not
be changing the interrupt service prologue code, let's
concentrate on the code found in the output driver
file. It will be in your DEMO directory under one of
several names, but you can refer to your Binding
Manual to find the exact name being used. For
tutorial purposes, let's call it UARTOUT.C.

It will have an entry in the task definitions header
file, CTASK.H, defining the task name as
UARTOUT. Its task's entry point will be uartout().
The driver design is based on getting a character
from the serial output queue and outputting it to the
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appropriate register of the UART or serial I/O port.
Once the character is output, the task waits for the
character to be output which is an event associated
with an RTXC semaphore. When the event is
signalled, the device is clear, and another character
can be obtained from the queue and the cycle
repeated.

The name of the serial output queue usually follows
the name of the consumer task. In our tutorial we
are using UARTOUT as the task name so it would
be logical to name the queue UARTOUTQ. (The
name of the queue in your demonstration may be
different.) To get a character from the
UARTOUTQ, the task uses the KS_dequeuew()
naming UARTOUTQ as an argument. The use of
KS_dequeuew() ensures us that the process will
operate only if there is a character in the queue
which it can remove. Otherwise, RTXC will block
the task and it will not be allowed to regain control
of the CPU until another task puts a character into
the queue.

When a character is returned to the task from the
KS_dequeuew() request, it is output to the
serializing device in whatever manner is appropriate
to it. Conversion of the bits of the character loaded
in parallel into a serial bit stream requires an amount
of time related to the baud rate of the device. (The
baud rate was selected during execution of an
initialization function when the driver was initially
entered.)
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During the time that it takes to serialize the bits in
the character, the CPU can perform other tasks. This
is one of the basic tenets of multitasking
architectures. Thus, UARTOUT executes a
KS_wait() RTXC kernel service naming the
semaphore as the one associated with the event.
(Let's call that semaphore UOUTSEMA for our
purposes here. Its name could be different but it will
be shown in the source code in UARTOUT.C.)
Executing the KS_wait() function allows RTXC to
block UARTOUT and perform one or more other
tasks, if Ready, until semaphore UOUTSEMA is
signalled indicating that the character has been
completely serialized.

How did UOUTSEMA get signalled? Answering
that question goes right to the heart of how
interrupts are processed in RTXC, and how context
switches can occur as a result.

When the interrupt occurred, control of the CPU
was transferred to the service prologue for the
transmit interrupt. After saving the necessary
processor and system context, the prologue code
called the interrupt servicing function cuout() where
the device is actually serviced. (The code for cuout()
is in C and is part of the file UARTOUT.C.) In
cuout(), the interrupt source is cleared and the
semaphore associated with the event,
UOUTSEMA, is signalled by passing it to the
common interrupt service exit function,
KS_ISRexit().
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That answers how UOUTSEMA is signalled, but
there is more to the story. Following it through the
complete processing sequence shows us how all
interrupts are serviced. Function KS_ISRexit() calls
another function, postem(), which signals semaphore
UOUTSEMA and the waiting task, UARTOUT, to
be made runnable. It also places the task's TCB in
the READY List at a position according to its
priority relative to other tasks in the READY List.
Finally, it determines the Ready task having the
highest priority and returns its TCB address to
KS_ISRexit(), which in turn returns it to the
interrupt servicing function for the driver, cuout(),
which then passes it to the interrupt service epilog
(common to all ISRs).

In the ISR epilog, the address of the highest priority
task is used to restore the task's context. Control of
the CPU is given to the task at a point indicated by
the content of the processor's Program Counter (or
Instruction Pointer) register of task's context.

In our example, task UARTOUT would have been
automatically put back into the READY List and a
new character output cycle begun. And that is not
only how UOUTSEMA was signalled as a result of
the interrupt, but how the interrupt is processed.

Application
Tasks

Besides the driver task for the serial output, the
demonstration application uses two others, DEMO1
and DEMO2, as the two tasks which actually
generate the messages. Let's examine how they
operate and how they use RTXC to accomplish their
function.
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The two demonstration tasks simply run periodically
and output a message. There is some
synchronization at the beginning, using a semaphore
handshake. Beneath the surface there are queueing
operations and exclusive resource access going on
as well.

Functionally, we want DEMO1 to synchronize the
startup of DEMO2 by signaling semaphore
DEMOSEM0 and then to wait on a handshake
signal by DEMO2 to semaphore DEMOSEM1.
Having received the handshake, DEMO1 knows
that it can proceed, and it enters a "forever" loop
where it outputs a simple text message. In
performing the output of the text, the task uses
exclusive access to resource CONRES to prevent
corruption of the message by output generated by
DEMO2. This is done by passing the resource
identifier to the function, printl().

The RTXC distribution includes the function,
printl(), to move text from a buffer to a queue.
DEMO1 formats the text message in a character
array called buffer and then uses printl() to move
the text from buffer to the Console Output Queue,
CONOQ. When it is finished, DEMO1 delays for a
period of 1 second (1000 msec/CLKTICK
ticks/msec) and then repeats the output message for
the next cycle.
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The code for demonstration task DEMO1 appears
below.

/* demo1.c */

/*
 *   RTXC    Version 3.2
 *   Copyright (c) 1986-1994
 *   Embedded System Products, Inc.
 *   ALL RIGHTS RESERVED
*/

#include "rtxcapi.h"
#include "cclock.h"   /* CLKTICK */
#include "cres.h"     /* CONRES  */
#include "cqueue.h"   /* CONOQ   */
#include "csema.h"    /* DEMOSEM0, DEMOSEM1 */

#define SELFTASK ((TASK)0)

extern int printl(char *, RESOURCE, QUEUE);

demo1()
{
   KS_signal(DEMOSEM0); /* tell task 2 to display startup message */
   KS_wait(DEMOSEM1);   /* wait for response */

   for (;;)
   {
      printl("Demo task 1: delay\n", CONRES, CONOQ);
      KS_delay (SELFTASK,(TICKS)1000/CLKTICK);
   }
}
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Turning our attention to DEMO2, we can see from
CTASK.C that it is of lower priority than DEMO1.
We can also see that when DEMO2 was first
initialized, it waited on DEMOSEM0 from
DEMO1. When this event occurred, DEMO2
signaled DEMOSEM1 then allocated a timer block
and set up a cyclic 5 second timer (5000
msec/CLKTICK ticks/msec) whose expiration is
associated with semaphore DEMOSEM2. After
establishing the timer, DEMO2 enters a "forever"
loop and immediately waits for DEMOSEM2.

The expiration of the cyclic 5 second timer will
cause semaphore DEMOSEM2 to be signaled. Due
to the rules of preemption, DEMO2 cannot get
control of the CPU until DEMO1 is blocked and
this event occurs.
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The code for demonstration task DEMO2 is shown
below.

/* demo2.c */
/*
 *   RTXC    Version 3.2
 *   Copyright (c) 1986-1994.
 *   Embedded System Products, Inc.
 *   ALL RIGHTS RESERVED
*/

#include "rtxcapi.h"
#include "cclock.h"   /* CLKTICK  */
#include "cres.h"     /* CONRES   */
#include "cqueue.h"   /* CONOQ    */
#include "csema.h"    /* DEMOSEM0, DEMOSEM1, DEMOSEM2 */

#define TMINT ((TICKS)5000/CLKTICK)

extern int printl(char *, RESOURCE, QUEUE);

demo2()
{
   CLKBLK *pclkblk = KS_alloc_timer();

   KS_wait(DEMOSEM0);
   printl("Demo task 2: semaphore from Demo task 1\n",CONRES,CONOQ);

   KS_signal(DEMOSEM1);
  /* start cyclic timer */
   KS_start_timer(pclkblk,TMINT,TMINT,DEMOSEM2);

   for (;;)
   {
      KS_wait(DEMOSEM2); /* wait for sema from timer */
      printl("Demo task 2: timer\n, CONRES, CONOQ);
   }
}
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Variations on
a Theme

The tasks described above are, admittedly, trivial
examples but they do serve to show how RTXC
tasks look. Armed with the knowledge of how the
demonstration application works, and with your
confidence in the ability of your Make files to build
an application, why not try a few modifications to
DEMO1 and DEMO2 just for fun.

You can make changes directly into the DEMO
directory or you can copy it to another directory. If
you do copy DEMO to another directory, be sure
that the paths used in your Make files are correct.

You will not have to rebuild the RTXC Kernel
Library, LIBRTXC, as it should be unchanged for
purposes of these exercises.

What do you do? A simple approach would be to
implement some of the examples in Section 5 of this
manual as parts of DEMO1 and DEMO2. Doing so
may not even require changes but to one task or the
other. The choice is yours.
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BUILDING
YOUR OWN
APPLICATION

Now that you have studied how RTXC works in the
demonstration application and have written some
elementary operations on your own, you are ready
to launch into your own application.

How do you get started? The first thing to do is to
create a new subdirectory under the RTXC directory
and give it a name, say MYAPPL. Then copy the
content of the distributed demonstration application
to the new directory. Now you have a base from
which to begin your own application development.

Device Drivers Device drivers must be made or modified to meet
your application's input and output requirements.
Presuming you will use a periodic timer, you will
want to have a clock driver. If you need a serial I/O
driver, you have a place from which to begin. For
other devices, you should follow the general outline
of the clock or serial output drivers.

If any of the driver's processes interrupts, add the
interrupt service prologue. RTXC distributions
usually include an assembly language file that
contains the ISR prologue for all devices. Any
additional device drivers may require modification of
that file. When calling the device servicing routine,
there is one note of caution: Be sure to observe
your compiler's rules concerning passing data
from an assembly language function to a C
function. You should see examples of argument
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passing in the existing code, but you should be
aware of why the code is written in that specific
manner.

Any driver responding to interrupts will need a C
language device servicing function. It will be called
from the device's interrupt service prologue. Write it
in C and make it a part of the file containing the
driver's task level code.

Write any new driver as a task making note of its
name and entry point as well as any other kernel
objects used. You will need to define all of them
during system generation.

Application
Tasks

The application tasks are the real meat of your
design. How do you determine what an application
task should do? How many tasks are needed? How
much of the system's function does an application
task perform? The list could go on - there are no
definite answers to these questions. The design and
implementation of embedded real-time systems do
not easily lend themselves to formalisms and
cookbook recipes.

But instead of leaving it at that point, let's examine
some concepts that have been used successfully.
Perhaps, somewhere in there, is the piece of
information you need.

Decomposition This is not so much a concept as it is an
organizational necessity. It refers to the breaking
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down, the decomposition, of the application in its
totality into component parts or functions. Those
parts become the application tasks, the database, the
input and output definitions. In effect, it becomes a
high level functional specification of your design.

You should not be too concerned about the language
used for implementation or whether or not a
component such as a real-time kernel will be needed.
If you do your application decomposition correctly,
those requirements become self-evident. Hopefully,
by the time you are reading this, you have already
completed this job and have your system functionally
defined.

Information
Hiding

This is one of the most powerful concepts you can
use for multitasking systems. You may know it by
some other name, such as encapsulation, but the
concept remains the same. In a multitasking system,
each task has a responsibility to perform a certain
repertoire of functions. But task A, in order to
execute properly, does not need to know the
methods used by task B when it executes. Task A
needs to know only that task B produces a certain
output or receives a certain input. Put simply, task B
should be a "black box" to task A.

This is classic von Neumann architecture applied to
software. Each task is a black box and produces
certain output for certain input. Connect the outputs
and inputs of the various black boxes, and you have
a good diagram of system data flow. Data Flow
Diagrams, a popular design tool today, are rooted in
this concept.



  RTXC User's Manual TUTORIAL

  Copyright  Embedded System Products, Inc. 4-27

The important thing to remember about information
hiding is that it is the interface between the tasks and
the process that determines how well your design
ultimately works. The interface defines the
information content and flow between the physical
process and the tasks, as well as that between tasks.
Usually, the information content and flow of an
interface specification is a natural description. You
don't need to get down to the bits and bytes of the
interface until you start your actual design
implementation.

What makes this concept so important is that it
obscures the internal structure of each task from the
rest of the system. And that is a good thing. A
method within a task can change because you have
determined a better way of doing something than
you had originally programmed. You make the
changes for the new method, and your system still
runs because you did not change the interface for the
task you modified. As you can see, this concept has
tremendous ramifications in the areas of testing,
maintenance, and product longevity.

Functionality Once again, there are no rules in determining just
how much a task should do. A good decomposition
will show what the functions of each module need to
be. However, there is no rule that says that you can
only have one task per function module in the
decomposed application. It is quite permissible, and
often desirable, if not necessary, to use multiple
tasks to accomplish a module's functions.
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It is usually a reasonable design rule to limit the
functions of a single task to a manageable set of
operations. You will likely see from your
decomposition that each task has a central, or
primary, function. This might be a single but
complex function or several simple, related, but
mutually exclusive functions. You will have to be the
judge as to what each task does. Just remember,
you, or someone else, must maintain the beast after
you get it working; so why complicate the job by
making the tasks too complex.

Another trap to avoid is to make up a set of tasks
which run in succession. For example, task A runs
and then task B, followed by task C, and so forth. If
none of the other two runs while the third is running,
all three are part of the same function and could be
justifiably combined into one task. If you create such
a sequential operation, you defeat the power of
multitasking and you can impact the responsiveness
of the system.

Timeliness Timeliness can be thought of as response time to an
event. When taken collectively, the timeliness of all
event handling determines the overall system
performance. It is at best a difficult concept to
describe. However, in your design, you will become
aware that certain things must be done either at a
certain time or within a certain time.

Just remember that multitasking allows you to have
two or more tasks in some stage of operation
concurrently. Each task runs during the time that
other tasks are waiting for events to occur. This is
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the foundation of multitasking, and you should use it
to achieve the timeliness requirements of your
application.

Priority Assuming you are implementing your application on
a single processor, you cannot escape a simple fact:
all tasks have to share the use of the CPU. How do
you share the CPU in such a way that it is possible
to meet the system's timeliness requirements?
Timeliness implies that some tasks receive control of
the CPU more than others, or they complete
operation within a specified period of time following
an event, or they perform their function without
preemption by other tasks. All of these are solved by
using priorities for each task.

A task's priority is an indication of how you perceive
its importance in the system relative to other tasks.
You should look at each task and determine what its
priority should be with respect to other tasks and to
the system as a whole. If it must be executed within
a very brief time following some event, you may
want to give it a high priority. If it is a periodic task
that runs at a low frequency, a low priority will
probably suffice. You may even determine that there
needs to be one or more tasks at the same priority.

Task
Synchronization

RTXC make extensive use of semaphores for
purposes of synchronizing tasks to both internal and
external events. But there are other ways as well to
synchronize without using events. You may pass
information between tasks using queues and
messages, and RTXC performs synchronization
automatically with the flow of data. This is a
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powerful feature because the system does it
transparently, making it a part of the multitasking
strategy.

Intertask
Communication

Use FIFO Queues and Messages to move data
between tasks. There are no particular rules as to
when to use one and not the other. However, some
guidelines may serve that purpose. FIFO Queues in
RTXC are circular buffers, and as such, have defined
lengths. Each entry into a queue requires that the
data be moved from its source to the next available
slot in the queue. If the number of bytes in the entry,
its width, is large RTXC will spend a lot of time
moving those bytes. That may not be desirable.

Queues are best employed to move entries having a
width of a few bytes while maintaining chronological
order. The maximum practical width of an entry is
something that you have to determine with respect
to your system's timing requirements. Keep in mind
that RTXC will move the data into or out of a queue
regardless of the width. However, the length of time
it takes to perform the move may have an adverse
effect on overall system performance.

If you have long buffers of data to move from one
task to another, a better method is to employ
mailboxes and messages. With messages, the data is
not moved. Rather, only a pointer to it is sent to the
mailbox. This results in a faster way to move large
volumes of data around the system. The receiving
task gets a pointer to the message and operates on
the message via that pointer and some structural
template of the message body.
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RTXC Configuration
Options

Being able to control the configuration of your real-
time kernel is an important aspect of embedded
systems development. Because memory is often at a
premium, having present only those elements of the
kernel that are needed by the application is one way
to manage memory usage. It is possible to make
RTXC fit practically any application's needs by the
inclusion or exclusion of various kernel objects and
services.

The RTXC distribution includes a file,
RTXCOPTS.H, in the KERNEL directory for that
purpose. This is a file that you must edit in order to
make the necessary selections, However, we have
tried to make it as easy as possible to use.

As you have seen, RTXC makes use of a set of
kernel objects, and the kernel services are directly
related to the presence of those objects. You must
have Task and Semaphore objects in order for
RTXC to operate at any level. Other than those two,
however, you have great flexibility. For instance, if
you are not going to use FIFO Queues, do not take
up memory space with that code. You can eliminate
all of the kernel services related to FIFO Queues by
simply excluding the Queue kernel objects from the
configuration. Not only does such an exclusion free
the program space taken by the excluded kernel
services, it also causes any related RAM to be freed
as well.
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It is just as likely that you may include a certain class
of kernel object but not use certain related kernel
services. You can exclude them as well by editing
RTXCOPTS.H.

Editing
RTXCOPTS.H

In order to edit RTXCOPTS.H, you first need to
make some choices about what you want to include
and exclude. Having made those selections, you can
proceed with editing RTXCOPTS.H to produce
your specific RTXC configuration.

There are several selections that you must make on
which many subsequent choices depend. You must
define the RTXC library configuration you want to
use and that, in turn, defines the set of kernel
services with which you have to work. For instance,
let us assume your RTXC license is for an Extended
Library. You may choose to use only the services
from the Advanced Library for a given application.
You may do this by defining RTXC_AL as the
library configuration. The kernel services unique to
the Extended Library would not be included in the
RTXC configuration.

Likewise, if you have licensed the RTXC Advanced
Library, your choices are limited to the set of
services in Advanced Library and the Basic Library.
Remember that the library configuration you choose
is determined by the kernel services you need. For
example, if you use just one kernel service from the
Extended Library, you must define the RTXC model
as RTXC_EL.
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In RTXCOPTS.H, there are three possible
definitions under the heading of RTXC Library
Configuration. They are:

#define (or #undef) RTXC_EL  /* Extended Library */
#define (or #undef) RTXC_AL  /* Advanced Library */
#define (or #undef) RTXC_BL     /* Basic Library */

Only one of those three can be defined. The other
two must be undefined.

If you have an Extended Library license and you
define RTXC_AL for the Advanced Library, all
kernel services in the Extended Library not in the
Advanced Library will be excluded when RTXC is
built.

There are several other options that you can control
with RTXCOPTS.H by defining or undefining
them. Some of them are specific to the processor or
compiler and are beyond the scope of this document.
But all of them are well described in the commentary
associated with each option. You should read the
text accompanying the file and determine your
response to each choice.

Each class of kernel object, except for Tasks,
Semaphores, and Timers may also be selected for
inclusion or exclusion. Thus, it is possible to make
global choices regarding MAILBOXES,
PARTITIONS, QUEUES, and RESOURCES. Like
the other options, you must define or undefine each
of these kernel objects in order to include or exclude
them respectively from the RTXC configuration.
The choices appear as follows:
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#define HAS_MAILBOXES
#define HAS_PARTITIONS
#define HAS_QUEUES
#define HAS_RESOURCES

To include a given class of kernel object, leave it
selected with the #define. To exclude an object,
change the #define to #undef.

You can further refine your RTXC configuration by
eliminating unwanted kernel services associated with
included kernel objects. Each kernel service that can
be so excluded has been entered into
RTXCOPTS.H. The options are organized
according to kernel object inclusions. For example,
if FIFO queues have been included, kernel services
dealing with Queues may be selectively included or
excluded. The file will appear something like the
following excerpt:
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/*************************************************/
/*    Define the Queue Services to be included   */
/*************************************************/

#ifdef HAS_QUEUES /* { */

#define HAS_DEQUEUE    /* REQUIRED */
#define HAS_ENQUEUE    /* REQUIRED */

#ifdef RTXC_AL /* { RTXC_AL */
#define HAS_DEQUEUEW   /* use #define or #undef */
#define HAS_ENQUEUEW   /* use #define or #undef */
#define HAS_PURGEQUEUE /* use #define or #undef */
#define HAS_DEFQSEMA   /* use #define or #undef */
#endif /* } RTXC_AL */

#ifdef RTXC_EL /* { */
#define HAS_DEQUEUET   /* use #define or #undef */
#define HAS_ENQUEUET   /* use #define or #undef */
#define HAS_INQQUEUE   /* use #define or #undef */
#define HAS_DEFQUEUE   /* use #define or #undef */
#endif /* } RTXC_EL */
#endif /* } HAS_QUEUES */

Finally, there is one warning associated with editing
RTXCOPTS.H. At the end of the file are some
sanity checks intended to catch gross errors you may
have committed during your editing. It is probably
not possible to catch every possibility that can cause
you trouble but we have attempted to catch most
problems. So, the warning is simple: Be careful in
your editing and don't change the sanity checks
unless you absolutely have to.
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System Generation
Using RTXCgen

After you have RTXC configured to suit your
application, you will have to define your
application's elements. Principally, the definitions are
the kernel objects of each class that you will be
using. RTXCgen is the system generation utility that
you use to do this. RTXCgen is described in Section
6 of this manual and doesn't require much more
explanation. It is an interactive program and is ready
to run on a PC compatible host.

If you edited RTXCOPTS.H and changed the state
of one or more of the switches, FPU,
DYNAMIC_TASKS, DYNAMIC_PARTITIONS,
or SEMA_USE_TABLE, you will need to compile
and link the RTXCgen files to produce a new
RTXCGEN.EXE.
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Putting It All
Together

By now you have seen the things you need to do in
order to build your own application. What has gone
unmentioned until now is the process of compiling
and linking the various parts into an executable
whole.

You compiled RTXC and built the library,
LIBRTXC, by using the Make file provided in the
RTXC distribution. You have used RTXCgen and
have produced C source code for the various kernel
objects you are using in your application. Lastly, you
have written your application tasks and support
routines. You will need to compile (and/or assemble)
all of the source code modules in your application
and the kernel object definitions. Hopefully, you
have modified the distributed Make file in the
DEMO directory to meet your application needs.

You will also have to specify the input information
for the linker so that the various object code
modules can be linked into the proper areas of
memory. If you have done all of that, you should be
in good shape to build your application executable
file.

The figure on the following page gives a graphical
presentation of what we have been discussing in this
last subsection, proving once again that a picture is
worth a thousand words.
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Figure 4-1
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SECTION 5

RTXC KERNEL SERVICES

_____________________________________

INTRODUCTION Kernel Services (KS) are the functions that a real
time kernel performs and serve to give it its flavor.
This section will describe the complete set of the
RTXC directives in two manners.

The first is an enumeration of each Kernel Service
according to the class to which it belongs. Included
in each description is a generalized C language
prototype of the Kernel Service function's calling
sequence.

The second description of Kernel Service will be in
alphabetical order and will include a complete
explanation of each Kernel Service function and an
example of its usage.
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CLASSES The Kernel Services of RTXC are divided into the
seven basic classes of:

Task Management Kernel Services deal with
starting, stopping, and otherwise maintaining
information about task states.

ISR Services perform a limited number of special
operations while CPU control is in an interrupt
service routine.

Intertask Communication and Synchronization
functions provide the services by which Tasks pass
data to other tasks via messages and queues. This
class also is responsible for the primary
synchronization services of RTXC.

Timer Management services deal with the RTXC
Timer facility so that tasks may perform their
operations with respect to time as an event.

Memory Partition Management Kernel Services
deal with the maintenance of the RTXC memory
partitions to ensure orderly usage of the system's
RAM.

Resource Management services provide an orderly
means to gain and release exclusive control of an
RTXC resource.

Special Kernel Services provide for user defined
extensions to RTXC which can be application
dependent.
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PROTOTYPES Each RTXC port includes a file, RTXCAPI.H,
which defines an ANSI C prototype for each Kernel
Service. Because RTXC is designed with portability
in mind, the API defined by RTXCAPI.H is
essentially identical for all ports of RTXC. However,
there are differences between some of the processors
on which RTXC operates which lead to variations in
sizes of certain parameters used by the Kernel
Services. Similarly, there may be syntactical
differences between C compilers of different
manufacture.

For example, a C compiler may use the key words
near and far to permit different memory models due
to the processor's architecture. Another C compiler
targeted to a different processor may not make use
of a memory model requiring near and far.

Another example might be the size of an integer on a
8-bit microcontroller versus that on a 32-bit high
performance processor.

You should refer to the RTXC header files, in
particular RTXCARG.H and TYPEDEF.H, for
actual sizes of the data elements if you are uncertain
about a particular size.
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GENERAL FORM
OF KERNEL
SERVICE
REQUEST

The general form of an RTXC Kernel Service
function call is:

KS_name([arg1][,arg2]...[,argn])

Where the character string "KS_" identifies name as
an RTXC Kernel Service. This prefix should prevent
name from being misidentified by a linker with some
similarly named function in the runtime library of the
compiler.
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ARGUMENTS
TO KERNEL
SERVICES

The RTXC Kernel Service descriptions to follow
will show the function prototypes with generalized
RTXC arguments. Similarly, values returned from
Kernel Service functions are shown symbolically.
The list below is a brief description of those
symbols:

SYMBOL DESCRIPTION

char character

CLKBLK Address of a timer (clock) block

FRAME Address of the stack frame of an
interrupted process

ENTRY Entry address of a task

QCOND Queue condition code

int Integer, single precision

KSRC kernel service return code

MBOX A mailbox identifier

PRIORITY The priority of a task or a message
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RESATTR The priority inversion attribute code
of a resource

RTXCMSG Address of an RTXC message
envelope

SEMA A semaphore identifier

size_t ANSI C compiler defined

TASK A task identifier (not the task's
priority)

TICKS Units of time maintained by RTXC
system time base

time_t ANSI C compiler defined structure

void No value returned or no argument
required

KSRC Kernel Service Return Code
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TASK
MANAGEMENT
SERVICES

The task management services provided by RTXC
allow for complete control of tasks and their
respective interactions.

KS_alloc_task(void)

Allocate a TCB from the Pool of Free
TCBs

KS_block(TASK, TASK)

Block a Range of Tasks from Running

KS_defpriority(TASK, PRIORITY)

Define Task Priority

KS_defslice(TASK, TICKS)

Define Task's Time-Slice Time Quantum

KS_deftask(TASK, PRIORITY,
     char*, size_t, void (*)(void) )

Define the Attributes of a Task

KS_deftask_arg(TASK, void *)

Define the Environment Arguments for a
Task
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KS_delay(TASK, TICKS)

Delay a Task for a Period of Time

KS_execute(TASK)

Execute a Task

KS_inqpriority(TASK)

Inquire on a Task's Priority

KS_inqslice(TASK)

Get the Task's Time-Slice Quantum

KS_inqtask(void)

Get Task Number of Current Task

KS_inqtask_arg(TASK)

Get the Current Task's Environment
Arguments

KS_resume(TASK)

Resume a Task

KS_suspend(TASK)

Suspend a Task
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KS_terminate(TASK)

Terminate a Task

KS_unblock(TASK, TASK)

Unblock a Range of Tasks

KS_yield(void)

Yield to Next Runnable Task
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ISR SERVICES ISR services provide a means of performing certain
operations while in an interrupt service routine.
These functions include allocating a block from a
Memory Partition, signaling a semaphore to
announce the occurrence of an event, processing a
clock tick, and terminating an ISR.

KS_ISRalloc(MAP)

Allocate a Block of Memory from the
Given Memory Partition.

KS_ISRexit(FRAME *, SEMA)

Exit Current Interrupt Service Routine
and Optionally Signal Given Semaphore

KS_ISRsignal(SEMA)

Signal Given Semaphore from an
Interrupt Service Routine

KS_ISRtick(void)

Perform System Required Processing for
a Clock Tick Interrupt
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INTERTASK
COMMUNICATION
AND
SYNCHRONIZATION
SERVICES

There are three subclasses of Kernel Services within
this class. The subclasses consist of those functions
which deal with RTXC Semaphores, RTXC
Messages, and RTXC Queues respectively.

SEMAPHORE
BASED SERVICES

A complete set of directives for managing
semaphores is provided by RTXC. The C calling
sequences for each directive will be described in the
section that follows. The definition of a semaphore
specification and prototyped functions are noted in
C idiom below.

KS_defmboxsema(MBOX, SEMA)

Define Mailbox Semaphore

KS_defqsema(QUEUE, SEMA, QCOND)

Define Queue Semaphore

KS_inqsema(SEMA)

Return Current State of Semaphore

KS_pend(SEMA)

Force a Semaphore to a Pending State
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KS_pendm(SEMA *)

Force Multiple Semaphores to Pending
State

KS_signal(SEMA)

Signal a Semaphore

KS_signalm(SEMA *)

Signal Multiple Semaphores

KS_wait(SEMA)

Wait on Event

KS_waitm(SEMA *)

Wait on Multiple Events

KS_waitt(SEMA, TICKS)

Time Limited Wait on Event

MESSAGE BASED
SERVICES

The message directives provide a means of
transferring large amounts of data between tasks
with minimal overhead since only pointers
(addresses) are passed. Message receipt acknowl-
edgment is also provided for task synchronization.
The format of a RTXC message and function
prototypes are noted.
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KS_ack(RTXCMSG *)

Acknowledge Message

KS_receive(MBOX, TASK)

Receive a Message

KS_receivet(MBOX, TASK, TICKS, KSRC *)

Receive a Message, Limit Duration
of Wait if MAilbox Empty

KS_receivew(MBOX, TASK)

Receive a Message, Wait if Mailbox
Empty

KS_send(MBOX, RTXCMSG *, PRIORITY,
SEMA)

Send a Message Asynchronously

KS_sendt(MBOX, RTXCMSG *, PRIORITY,
  SEMA, TICKS)

Send a Message Synchronously and Time
Limit Duration of Wait

KS_sendw(MBOX, RTXCMSG *, PRIORITY,
  SEMA)

Send a Message Synchronously
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QUEUE BASED
SERVICES

Queue directives provide a means of passing
multiple byte packets of information between tasks
with automatic task synchronization of queue full
and empty conditions.

KS_defqueue(QUEUE, size_t, int, void *, int)

Define Queue Attributes

KS_dequeue(QUEUE, void *)

Get Entry from a FIFO Queue

KS_dequeuet(QUEUE, void *, TICKS)

Get Entry from a FIFO Queue, Time
Limited Wait if Queue Empty

KS_dequeuew(QUEUE, void *)

Get Entry from a FIFO Queue, Wait
if Empty

KS_enqueue(QUEUE, void *)

Put Entry into FIFO Queue

KS_enqueuet(QUEUE, void *, TICKS)

Put Entry into FIFO Queue, Time
Limited Wait if Queue Full
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KS_enqueuew(QUEUE, void *)

Put Entry into FIFO Queue, Wait
if Queue Full

KS_inqqueue(QUEUE)

Inquire on Number of Entries in Queue

KS_purgequeue(QUEUE)

Reset Queue to Empty State
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RESOURCE
MANAGEMENT
SERVICES

Resource directives provide a means of managing
and protecting logical resources.  Typical resources
might include a shared database, non-reentrant code
modules, specialized hardware, or an expensive laser
printer.

KS_defres(RESOURCE, RESATTR)

Define Priority Inversion Attribute for a
Resource

KS_inqres(RESOURCE)

Inquire on the Owner of a Resource

KS_lock(RESOURCE)

Request Exclusive Use of a Resource

KS_lockt(RESOURCE, TICKS)

Request Exclusive Use of a Resource,
Time Limited Wait if Busy

KS_lockw(RESOURCE)

Request Exclusive Use of a Resource,
Wait if Busy

KS_unlock(RESOURCE)

Release Logical Resource
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TIMER
MANAGEMENT
SERVICES

The time based directives provide for the
synchronization of tasks with timed events.  In
addition, a generalized time based semaphore
scheme for more advanced time based requirements
is provided.

KS_alloc_timer(void)

Allocate a Timer

KS_elapse(TICKS *)

Compute Elapsed Time

KS_free_timer(CLKBLK *)

Free a Timer Block

KS_inqtimer(CLKBLK *)

Get Time Remaining on a Specified
Timer

KS_restart_timer(CLKBLK *, TICKS,
TICKS)

Restart an Active Timer

KS_start_timer(CLKBLK *, TICKS,
TICKS, SEMA)

Start a Timer
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KS_stop_timer(CLKBLK *)

Stop an Active Timer
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MEMORY
PARTITION
MANAGEMENT
SERVICES

The memory management directives provide a
system-wide means of dynamically allocating and
deallocating memory blocks to tasks on an as
needed basis.  Multiple tasks can thus share a
common pool of memory.  The basic unit of memory
managed by these directives is noted below in C
idiom.

KS_alloc(MAP)

Allocate a Block of Memory

KS_alloc_part(void)

Allocate a Memory Partition Header

KS_alloct(MAP, TICKS, KSRC *)

Allocate a Block of Memory with Time
Limited Wait

KS_allocw(MAP)

Allocate a Block of Memory with Wait

KS_create_part(void *, size_t, size_t)

Create a Memory Partition with Given
Attributes

KS_defpart(MAP, void *, size_t, size_t)

Define Attributes of a Memory Partition
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KS_free(MAP, void *)

Free a Block of Memory

KS_free_part(MAP)

Free a Memory Partition Header

KS_inqmap(MAP)

Returns Size of Block in a Partition
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SPECIAL SERVICES This is a class of directives which are included for
special purposes.

KS_deftime(time_t)

Define Current Date/Time

KS_inqtime(void)

Get Current Date/Time

KS_nop(void)

No Operation

KS_user(int (*) (void *), void *)

User Defined Kernel Service
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ALPHABETICAL LISTING OF KERNEL SERVICES

In the pages to follow, each KS will be shown in alphabetical order.  Each KS
will be described in a standard format:

Name
BRIEF FUNCTIONAL DESCRIPTION

CLASS One of the 7 KS classes of which it is a member.

SYNOPSIS The formal C declaration including argument
prototyping.

DESCRIPTION A description of what the KS does, data types used,
etc.

RETURN VALUE A description of the return values from the KS.

EXAMPLE One or more typical KS uses. The examples assume
the syntax of ANSI Standard C.

SEE ALSO List of related Kernel Services that could be
examined in conjunction with the current KS.

SPECIAL NOTES Assorted notes and technical comments.



  RTXC User's Manual KERNEL SERVICES

  Copyright  Embedded System Products, Inc. 23

KS_ack

ACKNOWLEDGE MESSAGE

CLASS Intertask Communication and Synchronization

SYNOPSIS void  KS_ack(RTXCMSG *message)

DESCRIPTION When a task receives a message and finishes pro-
cessing the message, it is good practice to let the
task which sent the message know that it has been
processed. The message acknowledge function is
intended to perform that service. The receiving task
has the address of the message envelope which was
returned by a prior KS_receive, KS_receivet, or
KS_receivew function call. The KS_ack function
performs the signaling of the message semaphore
specified by the sending task.

RETURN VALUE The function returns no value.

EXAMPLE Receive a message and save the pointer to the
message envelope in pointer p. When finished
processing the message body, inform the sending
task of the event.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"              /* defines EMAIL */
#include "rtxstruc.h"         /* defines RTXCMSG */

struct{
   RTXCMSG msghdr;  /* Message header (required) */
   char data[10];       /* start of message body */
} MYMSG;

MYMSG *p;

/* get next message from mailbox EMAIL */
p = (MYMSG *)KS_receivew(EMAIL,(TASK)0);

... Perform message processing

KS_ack(p);     /* signal message processing done */

SEE ALSO KS_receive, KS_receivet, KS_receivew, KS_send,
KS_sendt, KS_sendw
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KS_alloc

ALLOCATE A BLOCK OF MEMORY

CLASS Memory Partition Management

SYNOPSIS void  *KS_alloc(MAP map)

DESCRIPTION The KS_alloc Kernel Service function locates the
next free block in the given RTXC Memory Partition
specified by map and returns its address to the
calling task as the value of the function. If no block
is available in the specified partition, a value of
NULL is returned.

RETURN VALUE The function returns a pointer to the memory block
if successful. If there are no available blocks in the
given partition, the map is said to be empty and a
NULL pointer (void *(0)) is returned.

EXAMPLE In this example, a block of memory from one of the
RTXC memory partitions, MAP1, is needed. If the
allocation is successful, the pointer to the block is to
be stored in a character pointer p. If there are no
free blocks in the partition, the task is to output an
appropriate message.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"         /* defines MAP1 */

char *p;

if ( (p = (char *)KS_alloc(MAP1)) == NULL)
{
   ... Deal with no memory available
}
else
{
   ... Allocation was successful
}

SEE ALSO KS_alloct, KS_allocw, KS_free, KS_inqmap
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KS_alloc_part

ALLOCATE A MEMORY PARTITION HEADER

CLASS Memory Partition Management

SYNOPSIS MAP  KS_alloc_part(void)

DESCRIPTION The KS_alloc_part Kernel Service function locates
the next free Memory Partition header in the list of
dynamic Memory Partitions and returns its map
identifier to the calling task as the value of the func-
tion. No definition of the Map's attributes is done by
this Kernel Service.

RETURN VALUE The function returns a Map identifier of a dynamic
Memory Partition if successful. If no dynamic
Memory Partition header is available, function value
of zero (0) is returned.

EXAMPLE In this example, a task allocates a Memory Partition
dynamically and then defines its attributes using
some data values acquired during its operation. If
the allocation is successful, the Map's identifier is to
be stored in a variable, map1, of type MAP. If there
are no free dynamic Memory Partitions available, the
task is to output an appropriate message.
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#include "rtxcapi.h"       /* RTXC KS prototypes */

MAP map1;

if ( (map1 = KS_alloc_part()) == (MAP)0)
{
   ... Deal with no dynamic Maps available
}
else
{
   ... Allocation was successful
       Now define the Map's attributes
}

SEE ALSO KS_create_part, KS_defpart, KS_free_part
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KS_alloc_task

ALLOCATE A TASK CONTROL BLOCK

CLASS Task Management

SYNOPSIS TASK  KS_alloc_task(void)

DESCRIPTION The KS_alloc_task kernel service allocates the next
available Task Control Block from the pool of free
TCBs. The allocated TCB will be used in a dynamic
task allocation and will be followed at some point by
a request to define the allocated task's attributes
prior to its execution.

RETURN VALUE The function returns the value of the identifier of the
allocated Task Control Block if the allocation is
successful.

If there are no available Task Control Blocks, the
function returns a value of zero (0).

EXAMPLE In this example, the current task determines from the
state of the system that it needs to spawn another
task. It first allocates a TCB for the task to be
spawned, then it defines the task's attributes.
Optionally, it defines the new task's environment
arguments, and finally, executes the task. If there are
no available TCBs, the requesting task must handle
the condition with special program logic.
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#include "rtxcapi.h"       /* RTXC KS prototypes */

extern void taskA(void);
struct newenvrg   /* taskA environment arguments */
{
   char arg1;
   int  arg2;
.   ..etc
}
TASK newtaskA;
PRIORITY newpri;
char *pstk;
int stksz;

if ((newtaskA = KS_alloc_task()) == (TASK)0)
{
   ... Deal with no TCBs available
}
else        /* TCB allocated. Okay to use it */
{
 - determine size of stack to allocate (stksz)
 - allocate space for task's stack (pstk)
 - assign a priority of the new task (newpri)
 - then define the task attributes as follows:
   KS_deftask(newtaskA, newpri, pstk, stksz, taskA);

 - optionally define any environment arguments for
   the task as follows:
   KS_deftask_arg(newtask,&newenvrg);

 - once that is all done, start the task executing:
   KS_execute(newtaskA);
}

SEE ALSO KS_deftask_arg, KS_execute, KS_terminate
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KS_alloc_timer

ALLOCATE A TIMER

CLASS Timer Management

SYNOPSIS CLKBLK  *KS_alloc_timer(void)

DESCRIPTION The KS_alloc_timer kernel service function allocates
the next available timer from the pool of free timers
and returns its address to the calling task. If no timer
is available, a value of NULL (0) is returned. The
address, or handle, of the timer will be used in
subsequent RTXC kernel services when dealing with
timer functions. A task may allocate more than one
timer before one is deallocated.

RETURN VALUE The function returns a pointer to the timer block if
successful.

If there are no available timers, a NULL pointer
(void *(0)) is returned.

EXAMPLE In this example, a timer block is allocated and then a
cyclic timer is started using the allocated timer. If the
allocation is successful, the pointer to the timer
block is returned and stored in a pointer p. If there
are no free timer blocks, the task must handle the
condition with special program logic.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cclock.h"        /* defines CLKTICK */
#include "csema.h"         /* defines AISEMA */

CLKBLK *p;

p = KS_alloc_timer();
if (p == (CLKBLK *)0)
{
   ... Deal with no timers available
}
else
   KS_start_timer(p, 250/CLKTICK, 1000/CLKTICK, AISEMA);

SEE ALSO KS_free_timer, KS_restart_timer, KS_start_timer,
KS_stop_timer
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KS_alloct

ALLOCATE A BLOCK OF MEMORY,
WAIT FOR LIMITED TIME

IF MEMORY UNAVAILABLE

CLASS Memory Partition Management

SYNOPSIS void  *KS_alloct(MAP map,
                 TICKS ticks,
                 KSRC *ret_code)

DESCRIPTION The memory allocation function allocates the next
available block of memory from the specified
partition and returns its address. If there is a block
available in the specified memory partition, the
function returns its address immediately to the
requesting task. In addition, a value of RC_GOOD
will be stored at the address indicated by the pointer
to ret_code.

If there is no available block in the memory par-
tition, the requesting task is blocked, removed from
the READY List, and put into a WAIT state until
memory in the requested partition becomes
available. At the same time, a timeout timer is
started to limit the duration of the task's wait to the
period defined by ticks in the calling arguments to
KS_alloct.
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Either the timeout timer expiring or a block becom-
ing available in the partition will cause the waiting
task to be resumed. The latter cause returns the ad-
dress of the allocated memory block. If, however,
the timeout occurs and causes the task to be re-
sumed, a NULL pointer (0) will be returned as the
function value to indicate there was no block
available within the specified timeout period. The
function will store a value of RC_TIMEOUT at the
ret_code parameter.

If there are multiple tasks waiting for memory from
the same partition, the highest priority waiting task
will get the first available block.

RETURN VALUE The function returns a pointer to the memory block.

If the timeout occurs before there is memory to
allocate, the function returns a NULL pointer (void
*(0)) and RC_TIMEOUT via ret_code.

EXAMPLE Allocate a block of memory from MAP1 to be used
for a character buffer. Store the address of the string
in the character pointer p. If there is no memory
available at the time of the request, wait for a period
of 500 msec for a block to become available before
proceeding. If there is no memory available and the
timed wait expires, handle the situation with a
special segment.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cclock.h"        /* defines CLKTICK */
#include "cpart.h"         /* defines MAP1 */

char *p;
KSRC code;

/* no return until requested memory is available */
/* or until timeout occurs. */
p = (char *)KS_alloct(MAP1, 500/CLKTICK, &code);
if (p == ((char *)0))
{
         ... Handle no memory availability here
}
else
{
   ... Memory allocated. Proceed.
}

SEE ALSO KS_alloc, KS_allocw, KS_free, KS_inqmap
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KS_allocw

ALLOCATE A BLOCK OF MEMORY,
 WAIT IF NONE AVAILABLE

CLASS Memory Partition Management

SYNOPSIS void  *KS_allocw(MAP map)

DESCRIPTION The allocate memory with wait service function al-
locates the next available block of memory from the
specified partition and returns its address. If there is
no available memory, the requesting task is removed
from the READY List, blocked, and put into a
WAIT state until memory in the requested partition
becomes available.

If there are multiple tasks waiting for memory from
the same partition, the highest priority waiting task
will get the first available block.

RETURN VALUE The function returns a pointer to the memory block.

EXAMPLE Allocate a block of memory from MAP1 to be used
for a character buffer. Store the address of the string
in the character pointer p. If there is no memory
available at the time of the request, wait for it to
become available before proceeding.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"         /* defines MAP1 */

char *p;

p = (char *)KS_allocw(MAP1); /* no return until */
                             /* requested memory */
                             /* is available */

SEE ALSO KS_alloc, KS_alloct, KS_free, KS_inqmap
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KS_block

BLOCK A RANGE OF TASKS

CLASS Task Management

SYNOPSIS void  KS_block(TASK start,
               TASK end)

DESCRIPTION The KS_block function provides a means of selec-
tively blocking one or more tasks from running. This
function implements another means to block a task
in a manner similar to KS_suspend. The primary
purpose of KS_block is to provide RTXCbug with a
single call which blocks all other tasks. This function
should be used with caution and critical tasks should
never be blocked.

A runnable task to be blocked will be removed from
the READY List. A task which is not currently
runnable will be blocked again by this service. Once
a task is blocked by this service, it will become
runnable again only by invocation of the
KS_unblock or KS_execute kernel services.

The range of specified tasks to be blocked may in-
clude the current task but RTXC guarantees the
current task will not be blocked.  A starting task
number of 0 will block those tasks having a higher
task number than the current task up to and in-
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cluding the specified end task. An end task speci-
fication of 0 will block all tasks beginning with the
start task up to, but not including, the current task.
It is not legal to specify start task and end task as
both having a value of 0.

RETURN VALUE The function returns no value.

EXAMPLE 1.   Block tasks 5 through 8 inclusive.

#include "rtxcapi.h"      /* RTXC KS prototypes */

KS_block(5,8);          /* block 4 tasks, 5 -> 8 */

2.  Block from task 5 up to but not including the
current task.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#define SELFTASK (TASK(0))

KS_block(5,SELFTASK); /* block tasks 5 -> self-1 */

SEE ALSO KS_unblock
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KS_create_part

CREATE A DYNAMIC MEMORY PARTITION

CLASS Memory Partition Management

SYNOPSIS MAP  KS_create_part(void *body,
                    size_t blksize,
                    size_t n_blks)

DESCRIPTION The KS_create_part() function provides a means of
combining the two Basic Library Kernel Services,
KS_alloc_part() and KS_defpart() into a single
function. The function requires three arguments
specifying the address of the RAM area to be used
as the body of the Memory Partition (i.e. the
blocks), the size of the blocks in the Map, blksize,
and the number of blocks, n_blks.

If the Kernel Service finds an available dynamic
Memory Partition header, it will use the function
arguments to define the Map's attributes and then
link all of the blocks in the Map.

The value of the block size argument, blksize, must
be at least the size of a data pointer.

RETURN VALUE If the function is successful, it will return the
identifier of the allocated dynamic Memory
Partition.
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If the Kernel Service is unsuccessful, it returns a
value of zero (0).

EXAMPLE A task creates a dynamic Memory Partition having a
block size of 18 bytes and 24 blocks. The body of
the partition is a block of RAM allocated from
another Memory Partition whose block size is 512
bytes. If successful, the Map's identifier will be
stored in the variable of type MAP, map1.

#include "rtxcapi.h"      /* RTXC KS prototypes */
#include "cpart.h"            /* defines MAP512 */

MAP map1;
char *body;
size_t blksize, n_blks;

   ... blksize and n_blks defined by some means

if ( (body = (char *)KS_alloc(MAP512)) == NULL )
{
   ... Deal with no block available for dynamic
       Map's body. Maybe try another Map?
}

if ( (map1 = KS_create_part(body, blksize,n_blks) == (MAP)0 )
{
   /* the attempt to create a dynamic Map failed */
   /* free the unused RAM block */
   KS_free(MAP512, body);

   ... Then deal with the failure of the dynamic
       Memory Partition creation
}
else
{
   ... Creation was successful
}

SEE ALSO KS_alloc_part, KS_defpart, KS_free_part
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KS_defmboxsema

DEFINE MAILBOX SEMAPHORE

CLASS Intertask Communication and Synchronization

SYNOPSIS void  KS_defmboxsema(MBOX mailbox,
                     SEMA sema)

DESCRIPTION The KS_defmboxsema permits the association of the
Not_Empty condition of a mailbox with a
semaphore. The association permits a task to use the
KS_waitm Kernel Service to wait for the occurrence
of that condition or other events with a single
request.

RETURN VALUE The function returns no value.

EXAMPLE The current task is servicing two mailboxes,
HPMAIL and LPMAIL. It needs to synchronize with
the next message being sent to either mailbox, both
of which are currently empty. It uses the KS_waitm
Kernel Service to wait for mail to be sent to either
mailbox. When the task continues upon detecting
the presence of mail, it identifies the mailbox having
the mail, receives it, and processes it. Upon
completion of its processing, the task signals the
message sender that processing is finished.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"  /* defines HPMAIL and LPMAIL */
#include "csema.h"    /* defines GOTHP and GOTLP */

struct{
   RTXCMSG msghdr;  /* Message header (required) */
   char data[10];       /* start of message body */
} MYMSG;

MYMSG *msg;
SEMA sema;
SEMA semalist[] =
{
    GOTHP, GOTLP, 0
};

KS_defmboxsema(HPMAIL,GOTHP);/* define semas for */
KS_defmboxsema(LPMAIL,GOTLP);  /* both mailboxes */
sema = KS_waitm(&semalist); /* wait for mail */
switch (sema)
{
   case GOTHP:
      /* receive message in HPMAIL from any task */
      msg = (MYMSG *)KS_receive(HPMAIL,(TASK)0);
      ... process received message
      break;

   case GOTLP:
      /* receive message in LPMAIL from any task */
      msg = (MYMSG *)KS_receive(LPMAIL,(TASK)0);
      ... process received message
      break;
}
/* acknowledge message receipt and processing */
KS_ack(msg);

SEE ALSO KS_receive, KS_receivet, KS_receivew, KS_send,
KS_sendt, KS_sendw
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KS_defpart

DEFINE MEMORY PARTITION ATTRIBUTES

CLASS Memory Partition Management

SYNOPSIS void  KS_defpart(MAP map,
                 void *body,
                 size_t blksize,
                 size_t n_blks)

DESCRIPTION The KS_defpart() function provides the means to
define the attributes of a new Memory Partition or
to redefine those of an existing Map.  The function
requires four arguments including the Map identifier,
map, the address of the RAM area to be used as the
body of the Memory Partition (i.e. the blocks), the
size of the blocks in the Map, blksize, and the
number of blocks, n_blks.

Upon defining the Map's attributes, the function will
link all of the blocks in the Map.

The value of the block size argument, blksize, must
be at least the size of a data pointer.

RETURN VALUE The function returns no value.

EXAMPLE A task allocates a dynamic Memory Partition header
and, if successful, stores the Map's identifier in the
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variable of type MAP, map1. It then allocates the
body of the partition from another Memory Partition
whose block size is 512 bytes. Having all the
necessary objects, the task uses KS_defpart() to
define the Map's attributes.

#include "rtxcapi.h"      /* RTXC KS prototypes */
#include "cpart.h"            /* defines MAP512 */

MAP map1;
char *body;
size_t blksize, n_blks;

   ... blksize and n_blks defined by some means

if ( (map1 = KS_alloc_part()) == (MAP)0 )
{
   ... Deal with no dynamic Map available
}
else
{
   if ( (body = (char *)KS_alloc(MAP512)) == NULL )
   {
      ... Deal with no block available for dynamic
          Map's body. Maybe try another Map?
   }
   else
      KS_defpart(map1, body, blksize, n_blks);
}

SEE ALSO KS_alloc_part, KS_defpart, KS_free_part
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KS_defpriority

DEFINE TASK PRIORITY

CLASS Task Management

SYNOPSIS void  KS_defpriority(TASK task,
                     PRIORITY priority)

DESCRIPTION This function permits a task to define (or change)
the priority of itself or another task. The definition
may be any legal priority be it higher or lower than
the task's current priority.

For the current task, a change to a higher priority
will not cause a context switch. If the change is to a
lower priority, the current task may be preempted if
another task in the READY List has a higher
priority.

The current task may specify itself by the value of
zero (0) in the task argument field in the calling
sequence.

If the task whose priority is being changed is not the
current task, a preemption will occur if the new
priority of the object task becomes higher than the
requesting task.
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The priority of a task may be changed before it is
referenced in a KS_execute request. This may be
used to override the default priority setting which is
set equal to the task number during system ini-
tialization and during the KS_terminate function.

RETURN VALUE The function returns no value.

EXAMPLE Change the priority of task SERIALIN from its cur-
rent level to priority 3. Then change calling task to
priority 6.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"         /* defines SERIALIN */

KS_defpriority(SERIALIN, 3); /* new priority = 3 */

KS_defpriority(SELFTASK, 6); /* new priority = 6 */

SEE ALSO KS_execute, KS_terminate
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KS_defqsema

DEFINE QUEUE SEMAPHORE

CLASS Intertask Communication and Synchronization

SYNOPSIS void  KS_defqsema(QUEUE queue,
                  SEMA sema,
                  QCOND condition)

DESCRIPTION The KS_defqsema service provides the ability to
assign a semaphore to one of four conditions
associated with a FIFO queue. The possible
conditions are:

Queue_not_Empty,
Queue_not_Full,
Queue_Empty, and
Queue_Full.

These conditions have enumerated values of QNE,
QNF, QE, and QF respectively. The specification in
the calling arguments for the queue event, condition,
should be given as one of these four values.

Defining a queue semaphore establishes a re-
lationship with a queue condition. This association
permits a task to wait on a condition of the queue to
occur. This ability is most useful when a task needs
to synchronize with a given condition. When several
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queues are being used, a KS_waitm kernel service
can be used to synchronize with any of the events
associated with the specified queue conditions.

RETURN VALUE The function returns no value.

EXAMPLE A task needs to associate the Queue_not_Empty
condition on queue DATAQ with semaphore GOT1
so that it can synchronize with the event.

#include "rtxcapi.h"      /* RTXC KS prototypes */
#include "cqueue.h"       /* defines DATAQ */
#include "csema.h"        /* defines GOT1 */
struct entry
{
   int count;
   int values[8];
};

KS_defqsema(DATAQ,GOT1,QNE);

KS_wait(GOT1);
KS_dequeue(DATAQ, &entry)

SEE ALSO KS_defqueue, KS_dequeue, KS_dequeuet,
KS_dequeuew, KS_enqueue, KS_enqueuet,
KS_enqueuew, KS_inqqueue, KS_purgequeue
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KS_defqueue

DEFINE QUEUE ATTRIBUTES

CLASS Intertask Communication and Synchronization

SYNOPSIS KSRC  KS_defqueue(QUEUE queue,
                  size_t width,
                  int depth,
                  void *body,
                  int currsize)

DESCRIPTION The KS_defqueue service provides dynamic
definition of a queue's attributes including width
(entry size), depth (number of entries), address of
queue body (array of entries), and the number of
entries in the queue.  This function does not create a
new queue but rather modifies those queue
attributes specified at system generation time.

The queue may be defined as containing the number
of entries given by the value of currsize which may
be zero, for an empty queue, or any number less
than or equal to its defined depth. If currsize is equal
to depth, the queue is full.

Once defined, the queue may be used in any RTXC
queueing operation.  KS_defqueue is intended to
allow flexible queue sizing in environments where
RAM memory is precious and buffering
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requirements are dynamic and/or unknown until
system operation is underway.

RETURN VALUE The function returns two possible KSRC values.

If the function is performed successfully, a KSRC
value of RC_GOOD is returned.

If the value of currsize exceeds the value of depth,
the function will return
RC_ILLEGAL_QUEUE_SIZE.

EXAMPLE The current task must allocate a block of RAM from
a Memory Partition containing a block size of at
least 80 bytes and define new attributes for queue
DATAQ.  The queue will be defined as EMPTY.

The width of the entries is to be the size of the
structure entry and the depth is to be the value
previously defined as NUM. The body of the queue
will be the allocated block of RAM whose address
will be held in the pointer pbody.
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#include "rtxcapi.h"      /* RTXC KS prototypes */
#include "cqueue.h"       /* defines DATAQ */
#include "cpart.h"        /* defines MAP128 */

#define NUM 10

void *pbody;
struct entry
{
   int count;
   int values[8];
};

/* allocate RAM for queue body */
pbody = KS_allocw(BUFFPART);

KS_defqueue(DATAQ,sizeof(struct entry),NUM,pbody,0);

SEE ALSO KS_dequeue, KS_dequeuet, KS_dequeuew,
KS_enqueue, KS_enqueuet, KS_enqueuew,
KS_inqqueue, KS_purgequeue

SPECIAL NOTE Any task(s) waiting on queue availability conditions
(full, empty, not full, or not empty)  at the time of
the KS_defqueue may be left in an indeterminate
state.

To minimize RAM usage, a queue that is to be rede-
fined at runtime, should be defined as having a width
of 1 byte and a depth of 1 entry during system
generation. During the redefinition process, memory
occupied by the original queue body is not
reclaimed.
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KS_defres

DEFINE PRIORITY INVERSION
ATTRIBUTE FOR A RESOURCE

CLASS Resource Management

SYNOPSIS KSRC  KS_defres(RESOURCE resource,
                RESATTR condition)

DESCRIPTION The KS_defres kernel service defines the priority
inversion attribute of the specified resource. This
attribute determines if an attempt to lock a resource
can result in a priority inversion and if RTXC is to
handle the inversion. When enabled by ON as the
condition, the attribute will cause RTXC to check
for a priority inversion if an attempt to lock the
resource fails. When the attribute is disabled, no
such checking occurs. The default condition of the
attribute is OFF.

The function requires a resource identifier and the
condition of the priority inversion processing
attribute. To enable the attribute, the condition is
PRIORITY_INVERSION_ON while a value of
PRIORITY_INVERSION_OFF disables it.

Defining the state of the resource's priority inversion
attribute is only possible during the time when the
resource is not busy. If the resource is busy, an
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attempt to define the attribute will fail and the
function will return a value of RC_BUSY.

RETURN VALUE The function returns a value of RC_GOOD if
successful.

A value of RC_BUSY is returned if the resource is
busy when this kernel service is attempted.

EXAMPLE The current task wants to enable the priority
inversion processing for resource ALARM_LIST.
Once the resource attribute is defined the task will
lock the resource, use it, and then release the
resource.
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#include "rtxcapi.h" /* RTXC KS prototypes */
#include "cres.h    "/* defines ALARM_LIST */

/* enable priority inversion processing */
while(KS_defres(ALARM_LIST, PRIORITY_INVERSION_ON) == RC_BUSY)
{
   ... handle resource Busy condition
}
/* here when resource priority inversion ON */
KS_lockw(ALARM_LIST);  /* lock the resource */

... use the resource for something

KS_unlock(ALARM_LIST); /* release resource */

SEE ALSO KS_lock, KS_lockt, KS_lockw, KS_unlock
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KS_defslice

DEFINE A TASK'S TIME-SLICE QUANTUM

CLASS Task Management

SYNOPSIS void  KS_defslice(TASK task,
                  TICKS slice)

DESCRIPTION The KS_defslice kernel service defines the amount
of time the specified task is permitted to run before
it is forced to yield in a time-sliced scheduling
situation.

The function requires a task number and a time-slice
time quantum as arguments. The time quantum
period is specified as the number of RTXC clock
ticks approximating the desired duration of the time-
slice quantum. A task number of zero (0) has special
significance as it indicates the calling task.

If time-slicing is not in operation for the specified
task and the time quantum value is non-zero, the
task will be readied for time-sliced operation. The
task will begin time-sliced operation only when there
is another task in the Ready List having the same
priority and also ready for time-sliced operation.

If the task is either ready for time-slice operation or
is in active time-slice operation, its time quantum
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can be changed at any time. However, the new time
quantum will not be put into force until the
expiration of the time quantum currently in force.

A time quantum value of zero (0) causes time-sliced
operation to cease on the specified task. The
cessation will not go into effect until the expiration
of the time quantum currently active.

RETURN VALUE The function returns no value.

EXAMPLE The current task is to begin time-sliced operation
with a time quantum of 100 msec. After some period
of time-sliced operation, the task will cease time-
sliced operation.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cclock.h"            /* defines CLKTICK*/

/* define time slice quantum as 100 ms */
KS_defslice(SELFTASK,100/CLKTICK);

   ... Task now in time-sliced operation

/* turn off time-sliced operation */
KS_defslice(SELFTASK,(TICKS)0);

SEE ALSO KS_inqslice
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KS_deftask

DEFINE A TASK'S ATTRIBUTES

CLASS Task Management

SYNOPSIS KSRC  KS_deftask(TASK task,
                 PRIORITY priority,
                 char *stack,
                 size_t stacksize,
                 void (*entry)(void))

DESCRIPTION The KS_deftask kernel service defines the attributes
of an inactive task. While it can be used on both
static and dynamically allocated tasks, it is generally
found in association with the latter whose TCB has
been allocated with the KS_alloc_task kernel
service. The purpose of the service is to prepare the
task for execution by establishing the attributes
necessary for operation. The attributes include a task
number, a priority, a stack, and a task entry address.

The definition of attributes may only occur under
certain conditions. First of all, a definition may only
take place on a task whose state is INACTIVE.
Secondly, it is not permissible for a task to define its
own attributes. Therefore, the use of a task number
argument of zero (0) will be in error.

RETURN VALUE The function returns a value of RC_GOOD if the
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definition is successful.

The function returns a value of
RC_ILLEGAL_TASK if an attempt is made to
specify the object task's identifier with a value of
zero (0).

If the object task's state is not INACTIVE, the
function returns a value of RC_ACTIVE_TASK.

EXAMPLE The Current Task needs to spawn another task,
newtaskA, whose TCB it must allocate. The task's
entry address is taskA, and the task requires a stack
size of 256 bytes which the Current Task allocates
from memory partition MAP256. The task will run
at priority 14. After defining the task's attributes, the
Current Task starts newtaskA executing without
defining any environment arguments for it.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"          /* Memory Partitions */

extern void taskA(void);

TASK newtaskA;
PRIORITY newpri = 14;
char *pstk;
int stksz = 256;

newtaskA = KS_alloc_task();

pstk = KS_allocw(MAP256); /* allocate space for
                          /* task's stack */
KS_deftask(newtaskA,newpri,pstk,stksz,taskA);

KS_execute(newtaskA);

SEE ALSO KS_alloc_task, KS_deftask_arg, KS_execute
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KS_deftask_arg

DEFINE A TASK'S ENVIRONMENT ARGUMENTS

CLASS Task Management

SYNOPSIS void  KS_deftask_arg(TASK task,
                     void *arg)

DESCRIPTION The KS_deftask_arg establishes a pointer to a
structure containing parameters which define the
environment of the specified task. The content of the
structure may be anything required by the
application. Normal use of this kernel service would
be preceded by a section of code which defines each
member of the structure.

The function requires a task number and a pointer to
the environment arguments structure of the specified
task.

RETURN VALUE The function returns no value.

EXAMPLE The Current Task needs to spawn another task
which is to operate on the port and channel specified
by the content of two variables, port and chnl, which
have been determined elsewhere. The task is an
instance of taskA whose TCB must be allocated
dynamically and whose identifier is in newtaskA.
The task's entry address is taskA and the task
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requires a stack size of 256 bytes which the Current
Task allocates from memory partition MAP256. The
task will run at priority 14. After defining the task's
attributes, the Current Task defines two environment
arguments, channel and port, in a structure and
makes that structure known to taskA. Having done
so, the Current Task then starts taskA executing.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"          /* Memory Partitions */

extern void taskA(void);

struct envargA /* environment argument structure */
{
   int port;
   int channel;
};

struct envarg envargA;
TASK newtaskA;
PRIORITY newpri = 14;
char *pstk;
int stksz = 256;
int port, chnl;

newtaskA = KS_alloc_task();
pstk = KS_allocw(MAP256); /* allocate space for
                          /* task's stack */
KS_deftask(newtaskA,newpri,pstk,stksz,taskA);

envargA.port = port
envargA.channel = chnl

KS_deftask_arg(newtaskA,&envargA);
KS_execute(newtaskA);

SEE ALSO KS_alloc_task, KS_deftask, KS_execute,
KS_inqtask_arg
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KS_deftime

DEFINE SYSTEM TIME-OF-DAY AND DATE

CLASS Special

SYNOPSIS void  KS_deftime(time_t time)

DESCRIPTION The KS_deftime() service defines the Date and
Time-of-Day for the system. The function requires a
single argument which is a value of type time_t
containing the date and time as the number of
seconds since January 1, 1970. A function,
date2systime() is provided in the RTXC distribution
to convert from conventional calendar dates and
clock times to a value of type time_t.
Documentation on the uses of date2systime() is
found in the Binding Manual.

RETURN VALUE The function returns no value.

EXAMPLE The current task needs to define the Time-of-Day
which it gets from an ASCII buffer which was input
from the system console.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cvtdate.h" /* defines time_tm & proto- */
                      /* type for date2systime() */

struct time_tm d;

sscanf(buffer,"%d/%d/%d %d:%d:%d",
               &d.tm_yr, &d.tm_mon, &d.tm_day,
               &d.tm_hr, &d.tm_min, &d.tm_sec);

KS_deftime(date2systime(&d));

SEE ALSO KS_inqtime, date2systime
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KS_delay

DELAY A TASK FOR A PERIOD OF TIME

CLASS Timer Management

SYNOPSIS void  KS_delay(TASK task,
               TICKS period)

DESCRIPTION The KS_delay service blocks the specified task for a
period of time. The delayed task may be the current
task or another task and the object task may or may
not be in the READY List. If the task is in the
READY List when delayed, the function removes it
from the READY List. If a task is not in the
READY List, it will remain blocked at least until the
delay period elapses. Once the task is blocked, a
timeout timer is established for the specified delay
period.

The function requires a task number and a delay
period as arguments. The delay period is specified as
the number of RTXC clock ticks approximating the
desired time of the delay. A task number of zero (0)
has special significance as it indicates the calling
task.  Thus, a task need not know its own task
number to schedule a delay for itself.

If the current task uses delay time of zero (0) ticks,
there will be no delay and the calling task will
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immediately resume. A delay in progress on a task
other than the current task can be terminated by
calling KS_delay() using the delayed task's identifier
and a delay time of zero (0) ticks.

Caution should be exercised when scheduling or
canceling delays for other tasks.

RETURN VALUE The function returns no value.

EXAMPLE The current task is to delay itself for a period of 100
msec. After some processing, the task is to be again
delayed for a period of 50 msec. Note the two
methods of defining the time period of the delay.

#include "rtxcapi.h" /* RTXC KS prototypes */
#include "cclock.h"  /* defines CLKTICK */
#include "ctask.h"   /* defines SCANR */

/* delay SELF task for 100 ms */
/* clktick is defined as extern in cclock.c */
/* 100/clktick calc done at run time (Slower) */
KS_delay(SCANR,100/clktick);

... continue processing after delay

/* then do another delay */
/* CLKTICK is system wide #define in cclock.h */
/* 50/CLKTICK calculation done at compile */
/* time because it is Fast */
KS_delay(SELFTASK,50/CLKTICK);  /* delay SELF */
                                /* for 50 ms */
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KS_dequeue

GET ENTRY FROM A FIFO QUEUE

CLASS Intertask Communication and Synchronization

SYNOPSIS KSRC  KS_dequeue(QUEUE queue,
                 void *dest)

DESCRIPTION Dequeue is used to get the oldest entry from a FIFO
queue. If the queue is not empty, the oldest entry in
the queue is removed and stored at the destination
address given in the calling sequence. When the
dequeueing operation is successful, the function
returns a value of RC_GOOD.

If the queue is empty, no entry can be dequeued.
The function immediately returns a function value of
RC_QUEUE_EMPTY indicating the function
failed to dequeue an entry.

If the queue becomes empty as a result of the
KS_dequeue request and if there is a semaphore
previously associated with the given queue's
Queue_Empty event (see KS_defqsema), and if
there is a task waiting for that event, the associated
semaphore will be signaled to notify the waiting task
of the occurrence of the event.

RETURN VALUE The oldest entry in the queue is placed at the address
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specified by the argument in the calling sequence.

The Kernel Service function returns a value of
RC_GOOD if the dequeue is successful and a value
of RC_QUEUE_EMPTY if it is not.

EXAMPLE Dequeue an entry from DATAQ and store it in the
structure called entry.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"        /* defines DATAQ */

struct            /* structure for receiving the */
{                 /* dequeued entry */
   int type;
   int value;
} entry;

/* get data from DATAQ until it is empty*/
while (KS_dequeue(DATAQ,&entry) == RC_GOOD)
{
   ... do something with the entry just dequeued
}
... DATAQ was empty, deal with it here ...

SEE ALSO KS_defqsema, KS_dequeuet, KS_dequeuew,
KS_enqueue, KS_enqueuet, KS_enqueuew
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KS_dequeuet

GET ENTRY FROM A FIFO QUEUE,
 WAIT FOR LIMITED TIME

IF QUEUE EMPTY

CLASS Intertask Communication and Synchronization

SYNOPSIS KSRC  KS_dequeuet(QUEUE queue,
                  void *dest,
                  TICKS timeout)

DESCRIPTION KS_dequeuet is like KS_dequeuew except that any
blockage of the requesting task due to a
Queue_Empty condition is limited to the time period
specified by the timeout argument in the calling se-
quence.

If the queue is not empty, the oldest entry in the
queue is removed and stored at the destination
address given in the calling sequence. The Kernel
Service function returns a value of RC_GOOD
when the dequeueing operation is successful.

An empty queue causes the current task to be
blocked and removed from the READY List. After
the task is removed from the READY List, a
timeout timer is established with a duration as
defined by the timeout argument of the function call.
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The task will remain blocked until such time as
either of two conditions occurs:

• Another task puts an entry into the queue via
one of the kernel services which performs an
enqueue function, or,

• the timeout period elapses.

If the queue becomes empty as a result of the
KS_dequeuet request, and there is a task waiting on
the Queue_Empty event, then the associated
semaphore is signaled to notify the task of the
occurrence of the event.

RETURN VALUE The oldest entry in the queue is placed at the address
specified by the argument in the calling sequence.

The Kernel Service function returns a value of
RC_GOOD if the dequeue is successful.

If the timeout occurs, the function returns a value of
RC_TIMEOUT.

EXAMPLE Dequeue an entry from DATAQ and store it in the
structure called entry. If DATAQ is empty, wait no
longer than 250 msec for data to become available
before proceeding.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"        /* defines DATAQ */
#include "cclock.h"        /* defines CLKTICK */
struct            /* structure for receiving the */
{                 /* dequeued entry */
   int type;
   int value;
} entry;

/* get data from DATAQ */
if (KS_dequeuet(DATAQ, &entry, 250/CLKTICK) == RC_GOOD)
{
   ... do something here with queue entry
}
else
{
   ... timeout occurred. Deal with it here.
}

Note that the units of timeout are milliseconds. The
number of milliseconds in the timeout is divided by
the number of milliseconds per RTXC timer tick.
The quotient is the number of RTXC timer ticks
required to approximate the defined timeout.

SEE ALSO KS_dequeue, KS_dequeuew, KS_enqueue,
KS_enqueuet, KS_enqueuew
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KS_dequeuew

GET ENTRY FROM A FIFO QUEUE,
 WAIT IF EMPTY

CLASS Intertask Communication and Synchronization

SYNOPSIS void  KS_dequeuew(QUEUE queue,
                  void *dest)

DESCRIPTION KS_dequeuew, like KS_dequeue, is also used to get
the oldest entry from a FIFO queue. If the queue is
not empty, the oldest entry in the queue is removed
and stored at the destination address given in the
calling sequence. The Kernel Service function does
not return a value when the dequeueing operation is
successful.

Unlike KS_dequeue, however, an empty queue
causes the requesting task to be blocked and
removed from the READY List until such time when
another task puts an entry into the queue via one of
the kernel services which performs an enqueue
function.

If the queue becomes empty as a result of the
KS_dequeue request, and if there is a semaphore
previously associated with the given queue's
Queue_Empty condition, and if there is a task
waiting for the Queue_Empty condition, that
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semaphore is signaled to notify the task of the
occurrence of the event.

RETURN VALUE The function returns no value. The oldest entry in
the queue is placed at the address specified by the
argument in the calling sequence.

EXAMPLE Dequeue an entry from DATAQ and store it in the
structure called entry. If DATAQ is empty, wait for
data to become available before proceeding.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"        /* defines DATAQ */

struct            /* structure for receiving the */
{                 /* dequeued entry */
   int type;
   int value;
} entry;

KS_dequeuew(DATAQ,&entry);/* get data from DATAQ */

SEE ALSO KS_dequeue, KS_dequeuet, KS_enqueue,
KS_enqueuet, KS_enqueuew



  RTXC User's Manual KERNEL SERVICES

  Copyright  Embedded System Products, Inc. 77

KS_elapse

COMPUTE ELAPSED TIME

CLASS Timer Management

SYNOPSIS TICKS  KS_elapse(TICKS *etime)

DESCRIPTION The KS_elapse function returns the elapsed time
between two events.  Correct calculation of an
elapse time requires two calls to KS_elapse.  The
first sets the beginning time into the time marker,
etime. The value returned by the first kernel service
function is worthless and should be discarded.  The
second call is issued at the time of the event which
marks the end of the period being measured.  The
value returned by the kernel service function after
the second invocation will be the elapsed time of the
period.

The elapsed time is computed as the number of
RTXC clock ticks between the initial time marker as
contained in etime and the current system time at the
end of the period.

At the same time that the function is calculating the
difference between the two times to get the elapsed
time, the current system time is moved to the time
marker, etime, so that serial events can be timed.
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If the elapsed time of a set of serial events needs to
be measured, the first period is measured as
described. However, since etime is updated to the
current system time at the end of the previous event,
it is also the starting time of the next event.
Consequently, the elapsed times of the second and
successive events can each be obtained by a single
call to KS_elapse.

Resolution of the elapsed time is limited only by the
RTXC base clock frequency and is guaranteed to be
less than 1 clock period (TICK).

RETURN VALUE The function returns the elapsed time in system
clock ticks.

EXAMPLE Calculate the elapsed time of two changes of state
on a switch, where the change-of-state event is
associated with the semaphore, SWITCH.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cclock.h"        /* defines CLKTICK */
#include "csema.h"         /* defines SWITCH */

TICKS timestamp, diff;

KS_wait(SWITCH);           /* wait for the first */
                           /* change of state */

KS_elapse(&timestamp);     /* determine t(0) */

KS_wait(SWITCH); /* wait for switch change event */

diff = KS_elapse(&timestamp);/* get elapsed time */
                             /* since t(0) */

... use the elapsed time for something ...

KS_wait(SWITCH);  /* wait for next switch change */

diff = KS_elapse(&timestamp);/* get elapsed time */
                  /* since start of period known */
... Use the second period's elapsed time
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KS_enqueue

PUT ENTRY INTO FIFO QUEUE

CLASS Intertask Communication and Synchronization

SYNOPSIS KSRC  KS_enqueue(QUEUE queue,
                 void *entry)

DESCRIPTION KS_enqueue inserts an entry into a FIFO queue.  If
there is room in the queue for at least one entry, the
operation will succeed. If the queue is full, there is
no room to insert the desired entry and the function
cannot proceed normally. Consequently, it returns
control to the requesting task with a value indicating
the insertion did not happen.

If the entry inserted into the queue causes the queue
to reach the Queue_Full condition, and if there is a
semaphore associated with the Queue_Full condition
on the given queue, and if there is a task waiting for
the queue to become Full, the Queue_Full
semaphore is signaled to notify the waiting task.

RETURN VALUE The function returns a value of RC_GOOD if the
enqueueing operation is successful.

A returned value of RC_QUEUE_FULL indicates
the function failed to insert the data into the given
queue.
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EXAMPLE Insert data found in the structure named entry into
queue DATAQ making sure that the operation suc-
ceeded.

#include "rtxcapi.h"     /* RTXC KS prototypes */
#include "cqueue.h"      /* defines DATAQ */

struct
{
   int type;
   int value;
} entry;

/* enqueue packet of data into DATAQ */
if (KS_enqueue(DATAQ, &entry) == RC_GOOD)
{
   ... operation successful
}
else
{
   ... queue is FULL. Deal with it here.
}

SEE ALSO KS_dequeue, KS_dequeuet, KS_dequeuew,
KS_enqueuet, KS_enqueuew
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KS_enqueuet

PUT ENTRY INTO FIFO QUEUE,
 WAIT FOR LIMITED TIME

IF QUEUE FULL

CLASS Intertask Communication and Synchronization

SYNOPSIS KSRC  KS_enqueuet(QUEUE queue,
                  void *entry,
                  TICKS timeout)

DESCRIPTION KS_enqueuet inserts an entry into a FIFO queue.  If
there is room in the queue for at least one entry, the
operation will succeed and return to the requesting
task. If the queue state is Full, the function cannot
proceed normally and will cause RTXC to remove
the current task from the READY List and block it.

The duration of the task's blocking, unlike
KS_enqueuew, is limited by the period of time
specified by the timeout argument in the calling
sequence, or the Queue_Full condition being
removed, whichever occurs first. When the
Queue_Full condition is cleared by another task
removing an entry from the queue via a dequeueing
operation, the entry is inserted into the queue and
the waiting task unblocked.
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If the queue reaches the Queue_Full condition, and
there is a semaphore associated with its Queue_Full
event, and if there is a task waiting for the queue to
become Full, the semaphore associated with
Queue_Full is signaled to notify the waiting task.

RETURN VALUE The function returns a value of RC_GOOD if it
completes successfully.

If the Queue_Full condition persists longer than the
timeout period, the function returns a value of
RC_TIMEOUT.

EXAMPLE Insert data found in the structure named entry into
queue DATAQ. If the queue is Full, wait for 500
msec or until the enqueue operation is successful.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"
#include "cclock.h"

struct
{   int type;
    int value;
} entry;

/* enqueue packet of info into DATAQ */
if (KS_enqueuet(DATAQ,&entry,500/CLKTICK) == RC_GOOD)
{
   ... enqueue operation was successful
}
else
{
... Timeout. Queue was full longer than 500 ms.
}

SEE ALSO KS_dequeue, KS_dequeuet, KS_dequeuew,
KS_enqueue, KS_enqueuew
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KS_enqueuew

PUT ENTRY INTO FIFO QUEUE,
 WAIT IF QUEUE FULL

CLASS Intertask Communication and Synchronization

SYNOPSIS void  KS_enqueuew(QUEUE queue,
                  void *entry)

DESCRIPTION KS_enqueuew inserts an entry into a FIFO queue.
If there is room in the queue for at least one entry,
the operation will succeed and return to the
requesting task.  No function value is returned.  If
the queue is full, the function cannot proceed
normally causing it to remove the current task from
the READY List and block it until the Queue_Full
condition is removed.  When the Queue_Full
condition is cleared by another task removing an
entry from the queue via a dequeue operation, the
entry is inserted into the queue and the requesting
task unblocked.

If the entry inserted into the queue causes the queue
to reach the Queue_Full condition, and if there is a
semaphore associated with the Queue_Full condition
on the given queue, and if there is a task waiting for
the queue to become FULL, the Queue_Full
semaphore is signaled to notify the waiting task.
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RETURN VALUE The function returns no value.

EXAMPLE Insert data found in the structure named entry into
queue DATAQ. If the queue is full, wait until the
enqueue operation can succeed.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"        /* defines DATAQ */

struct
{
   int type;
   int value;
} entry;

KS_enqueuew(DATAQ,&entry);  /* enqueue packet of */
                            /* info into DATAQ */

SEE ALSO KS_dequeue, KS_dequeuet, KS_dequeuew,
KS_enqueue, KS_enqueuet
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KS_execute

EXECUTE A TASK

CLASS Task Management

SYNOPSIS void  KS_execute(TASK task)

DESCRIPTION The KS_execute function starts a task from its
beginning address. The task may be idle or it may
already be running. If the latter, it is removed from
the READY List. The task is inserted into the
READY List with its program counter (PC) and
stack pointer (SP) initialized to their starting values.
The task's starting address, priority, and stack
pointer are specified during system generation or
dynamically with the KS_deftask Kernel Service.

If the new task is of higher priority than the re-
questing (current) task, a context switch is per-
formed and the new task runs. If the requesting task
is of higher priority, control is returned to the caller.

RETURN VALUE The function returns no value.

EXAMPLE The current task starts task SHUTDOWN from its
starting address.
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#include "rtxcapi.h"    /* RTXC KS prototypes */
#include "ctask.h"      /* defines task SHUTDOWN */

KS_execute(SHUTDOWN);   /* execute SHUTDOWN task */

SEE ALSO KS_terminate, KS_deftask
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KS_free

FREE A BLOCK OF MEMORY

CLASS Memory Partition Management

SYNOPSIS void  KS_free(MAP map,
              void *p)

DESCRIPTION The free memory kernel service returns a block of
memory at a specified address to the free pool for
the given memory partition.

WARNING: No checks are performed to determine
that the specified memory block to be released
"belongs" in the designated partition.

It is the programmer's responsibility to ensure ad-
herence to the rule that a block is freed ONLY to the
partition from which it was allocated. If this rule is
violated, a partition's content can become corrupted
with blocks of memory from other partitions.

However, this rule has at least one exception which
can prove useful. It is possible during system gen-
eration to define more than one partition having the
same size blocks. One large virtual partition can then
be constructed dynamically by allocating the blocks
from one partition and freeing them into another
partition which will then contain the aggregate
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number of blocks. This technique can overcome cer-
tain addressing limitations of segmented architecture
computers that limit the size of a single RTXC
memory partition.

Likewise, a partition may also be extended by
allocating similarly sized blocks of memory from the
heap or from another RAM area within the system's
address space and freeing them to a given partition.

RETURN VALUE The function returns no value.

EXAMPLE Allocate a block of memory from the BUFFMAP
partition, use it for a while as a character buffer and
then return it to BUFFMAP.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"         /* defines BUFFMAP */

char *p;

p = (char *)KS_alloc(BUFFMAP);  /* get block for */
                                /* temporary use */
... /* use block for some operation */

KS_free(BUFFMAP,p); /* return block to BUFFMAP*/

SEE ALSO KS_alloc, KS_alloct, KS_allocw, KS_inqmap
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KS_free_part

FREE A DYNAMIC MEMORY PARTITION HEADER

CLASS Memory Partition Management

SYNOPSIS void  *KS_free_part(MAP map)

DESCRIPTION The free dynamic memory partition header kernel
service returns a dynamic partition header to the free
pool of dynamic partition headers.

RETURN VALUE The function returns a pointer to the block of
memory that was passed to KS_alloc_part or
KS_create_part when the dynamic memory partition
was created.

EXAMPLE Allocate a block of memory from the MAP512
partition, create a dynamic partition with it, use it
for a while then free the dynamic partition header.
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#include "rtxcapi.h"      /* RTXC KS prototypes */
#include "cpart.h"            /* defines MAP512 */

MAP map1;
char *body;
size_t blksize, n_blks;

   ... blksize and n_blks defined by some means

if ( (body = KS_alloc(MAP512)) == (char *)0 )
{
   ... Deal with no block available for dynamic
       Map's body. Maybe try another Map?
}

if ( (map1 = KS_create_part(body, blksize,n_blks) == (MAP)0 )
{
   /* the attempt to create a dynamic Map failed */
   /* free the unused RAM block */
   KS_free(MAP512, body);

   ... Then deal with the failure of the dynamic
       Memory Partition creation
}
else
{
   ... Creation was successful
   ... Use the partition a while
   ... Then free it
   body = KS_free_part(map1);
   ... Body may be used for another
   ...... dynamic partition
   ... Or released back to MAP512
}

SEE ALSO KS_alloc_part, KS_create_part, KS_defpart
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KS_free_timer

FREE A TIMER BLOCK

CLASS Timer Management

SYNOPSIS void  KS_free_timer(CLKBLK *timer)

DESCRIPTION KS_free_timer returns a given timer block to the
pool of free timers. The calling argument timer is a
pointer to the timer to be released. The function will
stop an active timer prior to freeing it.

RETURN VALUE The function returns no value.

EXAMPLE Allocate a timer block and store its address in
pointer p. Start a 250 msec timer using that timer
block, and then free it when the timer expires.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cclock.h"        /* defines CLKTICK */
#include "csema.h"         /* defines AISEMA */

CLKBLK *p;

p = (CLKBLK *)KS_alloc_timer();
if (p == (CLKBLK *)0)
{
   ... Deal with no timers available here
}
else
{
   KS_start_timer(p, 250/CLKTICK, 1000/CLKTICK,
                  AISEMA);

   ... do some processing ...

   KS_free_timer(p);        /* release the timer */
}

SEE ALSO KS_alloc_timer, KS_start_timer
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KS_inqmap

RETURNS SIZE OF BLOCK IN A PARTITION

CLASS Memory Partition Management

SYNOPSIS size_t  KS_inqmap(MAP map)

DESCRIPTION KS_inqmap returns a value equal to the size of each
block in the specified partition. This function is
intended for applications using blocks from multiple
partitions or those having no prior knowledge of the
block sizes in the system.

RETURN VALUE The function returns a number equal to the size of a
block in the specified memory partition.

EXAMPLE A task needs to compute the blocking factor for data
to be packed into a block of memory from partition
MAPVCT. It first inquires about the size of the block
and then computes the blocking factor by dividing
the block size by the size of the structure, entry,
being used for one data packet.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"

size_t size;
int bfactor;         /* computed blocking factor */
struct entry
{
   int len;
   char data[10];
}

size = KS_inqmap(MAPVCT);   /* get size of block */
         /* calculate block factor for structure */
bfactor = size / sizeof(struct entry);

SEE ALSO KS_alloc, KS_alloct, KS_allocw, KS_free
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KS_inqpriority

INQUIRE ON A TASK'S PRIORITY

CLASS Task Management

SYNOPSIS PRIORITY  KS_inqpriority(TASK task)

DESCRIPTION The KS_inqpriority function allows the calling task
to make a direct inquiry about the priority of a task.
A task value of zero (0) specifies the current task.

RETURN VALUE The function returns the priority of the specified
task.

EXAMPLE Look at the priority of the current task and reduce
its priority by 2.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"            /* defines HISTASK */
#define SELF (TASK(0))  /* Used for Current Task */

PRIORITY mypri, hispri;

mypri = KS_inqpriority(SELF);

/* raise Current Task's priority by 2 */
KS_defpriority(SELF, mypri-2);

hispri = KS_inqpriority(HISTASK);

... Do something with the other task's priority
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SEE ALSO KS_defpriority
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KS_inqqueue

INQUIRE ABOUT NUMBER
 OF ENTRIES IN QUEUE

CLASS Intertask Communication and Synchronization

SYNOPSIS int  KS_inqqueue(QUEUE queue)

DESCRIPTION The KS_inqqueue function allows the calling task to
make a direct inquiry about a queue's current size.
The current size is expressed in terms of entries in
the queue rather than the number of bytes.

RETURN VALUE The function returns the number of entries currently
in queue.

EXAMPLE Look at the current size of CHARQ and signal the
XOFF semaphore if the queue contains more than
20 entries. Signal the XON semaphore if the current
size of the queue is less than 4 entries.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"             /* defines CHARQ */
#include "csema.h"       /* defines XOFF and XON */

int depth;

depth = KS_inqqueue(CHARQ);/* get depth of CHARQ */
if (depth > 20)
  KS_signal(XOFF);
if (depth < 4)
  KS_signal(XON);

SEE ALSO KS_dequeue, KS_dequeuet, KS_dequeuew,
KS_enqueue, KS_enqueuet, KS_enqueuew

SPECIAL NOTE The current queue size may change between the time
the task calls the KS_inqqueue service and its next
request for an enqueue or dequeue service.
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KS_inqres

INQUIRE ON THE OWNER OF A RESOURCE

CLASS Resource Management

SYNOPSIS TASK  KS_inqres(RESOURCE resource)

DESCRIPTION The KS_inqres function allows the calling task to
determine the owner, if any, of a specified resource.

RETURN VALUE The function returns the identifier of the task that
currently owns the given resource or a value of zero
(0) if the resource is unlocked.

EXAMPLE Determine the owner of the PRINTER resource and
see if is owned by the Alarm Output task,
ALRMTASK.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cres.h"          /* defines PRINTER */
#include "ctask.h"         /* defines ALRMTASK */

if (KS_inqres(PRINTER) == ALRMTASK)
{
   ... do something
}
else
{
   ... do something else if resource is unlocked
}
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SEE ALSO KS_lock, KS_lockt, KS_lockw
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KS_inqsema

RETURN CURRENT STATE OF SEMAPHORE

CLASS Intertask Communication and Synchronization

SYNOPSIS SSTATE  KS_inqsema(SEMA semaphore)

DESCRIPTION KS_inqsema returns a value indicating the state of
the given semaphore.

NOTE: The state of the semaphore may actually
change between the time the request is issued and
the time the semaphore state is returned, due to an
exception which interrupts the kernel service and
alters the state of the semaphore.

RETURN VALUE The function returns a number equivalent to the
state of the semaphore as follows:

• SEMA_DONE

• SEMA_PENDING

• Task ID number of waiting task

EXAMPLE The current task wants to determine if semaphore
AIDONE is in a DONE state. If so, it is to perform
some processing.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"         /* defines AIDONE */

if (KS_inqsema(AIDONE) == SEMA_DONE)
{
   ... semaphore is DONE, process something
};

SEE ALSO KS_pend, KS_signal, KS_wait, KS_waitm,
KS_waitt
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KS_inqslice

GET TIME-SLICE TIME QUANTUM

CLASS Task Management

SYNOPSIS TICKS  KS_inqslice(TASK task)

DESCRIPTION The KS_inqslice function allows the calling task to
obtain the value of the time-slice time quantum for
the object task. If there has been no time-slice time
quantum defined for the specified task, the function
returns a value of zero (0).

RETURN VALUE The function returns the value of the specified task's
time-slice time quantum in units of system clock
ticks.

EXAMPLE Get the time-slice time quantum for the task SCANR
and see if it has been defined. If not, define the task's
time quantum at 100 msec.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"              /* defines SCANR */
#include "cclock.h"           /* defines CLKTICK */

if( (KS_inqslice(SCANR) == (TICKS)0)
   KS_defslice(SCANR,100/CLKTICK);
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SEE ALSO KS_defslice
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KS_inqtask

GET NUMBER OF CURRENT TASK

CLASS Task Management

SYNOPSIS TASK  KS_inqtask(void)

DESCRIPTION The KS_inqtask function allows the calling task to
obtain its task identifier.

RETURN VALUE The function returns the task number of the Current
Task.

EXAMPLE Get the task number of the Current Task and use it
as an argument in changing the priority of the task to
10.

#include "rtxcapi.h"       /* RTXC KS prototypes */

TASK mytaskid;

mytaskid = KS_inqtask();

KS_defpriority(mytaskid, 10);

SEE ALSO KS_defpriority
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KS_inqtask_arg

GET ADDRESS OF TASK'S
 ENVIRONMENT ARGUMENTS

CLASS Task Management

SYNOPSIS void  *KS_inqtask_arg(TASK task)

DESCRIPTION The KS_inqtask_arg function allows the calling task
to obtain a pointer to the structure containing the
environment arguments for the specified task. The
task argument may be zero (0) to indicate that the
request is made for the calling task's environment
arguments.

This call may be used by any task whose
environment arguments have been previously
defined to RTXC by the KS_deftask_arg function.
Normally, the function will be used by tasks which
have been dynamically defined by the KS_deftask
function. Those tasks would likely have an
associated environment argument structure in order
to determine the parameters they need to operate.

RETURN VALUE The function returns a pointer to the specified task's
environment argument structure. If no such
definition has been made, the function returns a
NULL pointer.
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EXAMPLE The Current Task is a communications channel
driver and is an instance of a task which may have
clones also in operation. In order to run, it needs to
determine the operational parameters, the
communications port and channel, on which it will
operate. It will do that by getting the data from its
environment argument structure which contains the
port and channel identifiers. The environment
argument structure has been previously defined.

While the example below is simple, it demonstrates
some of the basic concepts in organizing a task
which is dynamically allocated, defined, and
executed. In contrast to a static task, the dynamic
task is normally used in situations where each
instance of the task serves one particular purpose. In
the example to follow, the purpose is to handle a
single communications port and the channel on that
port.

Other instances of the same task may already be in
operation on other port/channels. Thus it is
necessary for the task to determine which it is and
the critical data it needs in order to operate. That
data should be found in the task's environment
argument structure, the content of which was
probably filled by the task that spawned the Current
Task.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#define SELF (TASK(0))    /* define Current Task */

void commchnl(void)
{
   struct myargs
   {
      short port;  /* port number */
      short chnl;  /* channel number */
   };
   struct myargs *envargs;
   int chnlstat;          /* port/channel status */

   /* first find out which we are by getting the */
   /* environment arguments */
   envargs = KS_inqtask_args(SELF);

   while((chnlstat = get_chnl_stat(envargs->port,
                      envargs->chnl)) != 0)
   {
      ... while the status is non zero, do some
          work with the port and channel to
          process the data stream
   }
   KS_terminate(SELF); /* terminate when the */
                              /* status is 0 */
}

SEE ALSO KS_deftask, KS_deftask_arg
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KS_inqtime

GET CURRENT TIME-OF-DAY AND DATE

CLASS Special

SYNOPSIS time_t  KS_inqtime(void)

DESCRIPTION A task needing to determine the current time-of-day
and/or date can use the KS_inqtime Kernel Service.
The function returns the System Calendar as a value
of type time_t. If the task needs to present the
System Time as normal calendar and clock data, the
value returned by the function should be passed to
the systime2date() function. Documentation on
systime2date() is found in the Binding Manual.

RETURN VALUE The function returns System Time as a single value
of type time_t. If there has been no definition of an
actual date, the returned value represents the
number of seconds that have elapsed since the
system was initialized. If there has been a date
defined, the returned value represents the number of
seconds that have elapsed from January 1, 1970 to
the present time.

EXAMPLE The Current Task wants to output the current date
and time-of-day to the console via the Console
Output Queue.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"             /* defines CONOQ */
#include "cvtdate.h" /* defines time_tm & proto- */
                      /* type for systime2date() */

struct time_tm timenow;
char buffer[40];

systime2date(KS_inqtime(), &timenow);
                 /*get the date*/* & time-of-day */
/* now prepare the output string */
sprintf(&buffer,"DATE: %d/%d/%d TIME: %d:%d:%d\n",\
        timenow.tm_mon, timenow.tm_day,
        timenow.tm_yr, timenow.tm_hr,
        timenow.tm_min, timenow.tm_sec)

/* send string to console */
printl(&buffer,0,CONOQ);

SEE ALSO KS_deftime, systime2date
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KS_inqtimer

GET TIME REMAINING ON A TIMER

CLASS Timer Management

SYNOPSIS TICKS  KS_inqtimer(CLKBLK *timer)

DESCRIPTION The KS_inqtimer function allows the calling task to
obtain the time remaining on a specified timer, the
pointer to which is passed as an argument to the
function. If the specified timer is in an ACTIVE
state, the remaining time will be returned in units of
RTXC clock ticks. If the timer status is not
ACTIVE, the function will return a value of zero
(0).

RETURN VALUE The function returns the number of ticks remaining
on the given timer if the timer is ACTIVE.
Otherwise, it returns a value of zero (0).

EXAMPLE The Current Task starts a 500 msec timer and then
waits on TMRSEMA, the timer expiration, or
another event using semaphore INTSEMA. When
either event occurs, the task determines which event
happened and sets up a variable, remainder, that
contains the time remaining on the active timer. If
the event associated with INTSEMA occurred, the
remaining time is obtained and the timer is stopped.
Otherwise, the value of remainder will be zero (0).
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"  /* defines INTSEMA & TMRSEMA */
#include "cclock.h"           /* defines CLKTICK */

TICKS remainder;
CLKBLK *pclkblk;
SEMA sema;
SEMA *semalist[] =
{
   INTSEMA, TMRSEMA, 0
};
/* allocate a timer and start it */
pclkblk = KS_alloc_timer();
KS_start_timer(pclkblk,500/CLKTICK,0,TMRSEMA);

/* now wait for either the event or the timer */
sema = KS_waitm(semalist);
switch (sema)
{
   case INTSEMA:               /* event occurred */
      remainder = KS_inqtimer(pclkblk);
      KS_stop_timer(pclkblk);
      break

   case TMRSEMA:               /* timer occurred */
      remainder = 0;
      ... timer elapsed before event occurred
          at this point both semaphores are back
          in a PENDING state and the timer is in
          an INACTIVE state.
      break:
}
... now do something with the remainder

SEE ALSO KS_start_timer, KS_stop_timer
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KS_ISRalloc

ALLOCATE A BLOCK OF MEMORY FROM AN ISR

CLASS ISR Services

SYNOPSIS void  *KS_ISRalloc(MAP map)

DESCRIPTION The KS_ISRalloc Kernel Service function allows an
interrupt service routine to allocate a block of
memory. The function locates the next free block in
the given RTXC Memory Partition specified by map
and returns its address to the calling interrupt service
routine as the value of the function. If no block is
available in the specified partition, a value of NULL
is returned. Interrupts are disabled while the function
is executing and a context switch during the kernel
call is not possible.

RETURN VALUE The function returns a pointer to the memory block
if successful. If there are no available blocks in the
given partition, the map is said to be empty and a
NULL pointer (void *(0)) is returned.

EXAMPLE In this example, a block of memory from one of the
RTXC memory partitions, MAP1, is needed. If the
allocation is successful, the pointer to the block is to
be stored in a character pointer p. If there are no
free blocks in the partition, the interrupt service
routine must take the appropriate action.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"         /* defines MAP1 */

char *p;

if ( (p = (char *)KS_ISRalloc(MAP1)) == NULL)
{
   ... Deal with no memory available
}
else
{
   ... Allocation was successful
}

SEE ALSO KS_ISRexit, KS_ISRsignal, KS_ISRtick
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KS_ISRexit

EXIT AN INTERRUPT SERVICE ROUTINE

CLASS ISR Services

SYNOPSIS FRAME  *KS_ISRexit(FRAME *frame,
                   SEMA sema)

DESCRIPTION The KS_ISRexit service provides a generalized
means of terminating an interrupt service routine and
informing RTXC of the event. The function requires
that the pointer to the interrupted context be passed
to RTXC. Optionally, a semaphore may also be
signaled as part of this function. If no semaphore is
to be signaled, the semaphore identifier should be
passed as a value of zero (0).

RETURN VALUE The service returns a pointer to the stack frame of
the highest priority task in the Ready List. The stack
frame pointer is used by the ISR epilogue to restore
the context of the highest priority task.

EXAMPLE When a Push Button is pressed it causes an
interrupt. Upon acknowledgment of the request, the
Current Task is interrupted and CPU control is
granted to the associated Interrupt Service Routine
(ISR). After clearing the source of the interrupt, the
device servicing routine needs to inform RTXC of
the Push Button event by exiting the ISR and
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signaling semaphore PBISEMA. The value returned
by the function points to the context of the highest
priority task in the Ready List.

/* Interrupt service example - Push Button input
*/
/* C level Push Button device service function */
FRAME *pbic(FRAME *frame)
{
... clear the interrupt source

return(KS_ISRexit(frame, PBISEMA));
}

SEE ALSO KS_ISRsignal, KS_ISRtick, KS_ISRalloc
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KS_ISRsignal

SIGNAL SEMAPHORE FROM AN
INTERRUPT SERVICE ROUTINE

CLASS ISR Services

SYNOPSIS void  KS_ISRsignal(SEMA sema)

DESCRIPTION The KS_ISRsignal provides a means by which an
interrupt service routine may signal a semaphore.
This function supplements the semaphore signaling
capability of KS_ISRexit() and is intended for use
when the ISR needs to signal more than one
semaphore.

RETURN VALUE The service returns no value.

EXAMPLE In an interrupt service routine for a full duplex serial
I/O driver, it is possible that two events can be
detected during the course of servicing the UART
device. If such a situation occurs, signal both.
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FRAME *uartc(FRAME *frame)
{
   /* test source of interrupt */
   if (USART_STATUS == TX_BUFF_EMPTY)
   {
      ... Output: clear output interrupt here
      /* now see if input also happened */
      if (USART_STATUS == RX_READY)
      {
         /* input is also READY */
         ... read character and clear interrupt
         /* signal serial input semaphore */
         KS_ISRsignal(SERINSEMA);
      }
      /* exit and signal serial output semaphore */
      return(KS_ISRexit(frame, SEROUTSEMA));
   }
   else  /* if here it is USART input */
   {
      ... Input: read character and clear interrupt
      /* now see if output happened
      if (USART_STATUS == TX_BUFF_EMPTY)
      {
         /* output DONE */
         ... clear interrupt source
         KS_ISRsignal(SEROUTSEMA); /*signal event*/
      }
      /* signal input semaphore and end ISR */
      return(KS_ISRexit(frame,SERINSEMA));
   }
}

SEE ALSO KS_ISRexit, KS_ISRtick, KS_ISRalloc
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KS_ISRtick

PROCESS A CLOCK TICK INTERRUPT

CLASS ISR Services

SYNOPSIS int  KS_ISRtick(void)

DESCRIPTION The KS_ISRtick service provides a means of
performing all of the RTXC dependent functions
necessary when a clock TICK interrupt occurs.

RETURN VALUE The kernel service returns an integer value of 1 if the
function determines that a timer has expired and
needs to be signaled.

It returns a value of 0 if no timer expired as a result
of the clock TICK.

EXAMPLE A model for the device servicing function of a clock
driver is the only place where KS_ISRtick() should
appear.
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FRAME *clkc(FRAME *frame)
{
... clear device specific interrupt

... do any application specific processing

KS_ISRtick(); /* process the clock tick */
/* return from interrupt */
return(KS_ISRexit(frame, (SEMA)0));
}

SEE ALSO KS_ISRexit, KS_ISRalloc
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KS_lock

REQUEST EXCLUSIVE USE OF A RESOURCE

CLASS Resource Management

SYNOPSIS KSRC  KS_lock(RESOURCE resource)

DESCRIPTION The KS_lock service provides a generalized means
of requesting or managing a logical resource during
a period of exclusive use. A logical resource can be
anything, such as a shared database, non-reentrant
code (i.e., BIOS/DOS), math coprocessor or
emulator library, etc. Nested lock requests by the
current owner are supported. However, unlock
requests by non-owners are ignored.

If the specified resource is idle, it is marked BUSY
to prevent other tasks from using it, and a function
value of RC_GOOD is returned. If the resource is
owned at the time of request, the calling task
resumes with a function value of RC_BUSY being
returned from KS_lock.

RETURN VALUE The kernel service returns a value of RC_GOOD if
the lock attempt succeeds for the initial lock. A
value of RC_NESTED is returned if the resource is
already owned by the caller.
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It returns a value of RC_BUSY if the specified re-
source is owned by another task.

EXAMPLE The current task wants to output a system status
report to the system printer without interspersed
messages from other system monitors. When the
report is finished, exclusive use of the printer is to be
released.

If the printer is unavailable, perform a code segment
to handle the situation.

In this example it is known that the current task does
not own the resource prior to the call to KS_lock.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cres.h"          /* defines PRINTER */

if (KS_lock(PRINTER) == RC_GOOD)
{
   ... PRINTER is now locked for exclusive use
       during printing of status report

   KS_unlock(PRINTER);   /* release PRINTER lock */
}
else
{
...PRINTER is locked by another task. Deal with it.
}

SEE ALSO KS_lockt, KS_lockw, KS_unlock
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KS_lockt

REQUEST EXCLUSIVE USE OF A RESOURCE,
WAIT FOR LIMITED TIME IF BUSY

CLASS Resource Management

SYNOPSIS KSRC  KS_lockt(RESOURCE resource,
               TICKS timeout)

DESCRIPTION KS_lockt operates like the KS_lockw kernel service
except that it limits the duration of the waiting
period should the object resource be busy. It
provides a generalized means of requesting or
managing a logical resource to be used for exclusive
use. A logical resource can be anything, such as a
shared database, non-reentrant code (i.e.,
BIOS/DOS), math coprocessor or emulator library,
etc. Nested lock requests by the current owner are
supported. However, unlock requests by non-
owners are ignored.

If the specified resource is inactive, it is marked
BUSY to prevent other tasks from using it. If the re-
source is BUSY at the time of request, the calling
task is blocked and removed from the READY List
until the task currently using the resource unlocks it.
A timeout timer is started with a duration as
specified by the timeout argument in the calling
sequence.
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RETURN VALUE If the calling task already owns the resource, a
timeout timer is not started and a value of
RC_NESTED is returned immediately.

If the ownership of the resource is gained before the
timeout expires, the function returns a value of
RC_GOOD.

If the timeout occurs, the function returns a value of
RC_TIMEOUT.

EXAMPLE The current task wants to output a system status
report to the system printer without interspersed
messages from other system monitors. When the
report is finished, exclusive use of the printer is to be
released.

If the printer is unavailable for a period of 5 seconds,
perform a code segment to handle the situation and
then try it again.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cres.h"          /* defines PRINTER */
#include "cclock.h"

/* lock the Printer resource. */
/* Limit WAIT to 5 sec. */
while ((KS_lockt(PRINTER, 5000/CLKTICK)) == RC_TIMEOUT)
{
   ... Resource unavailable. Timeout occurred.
}
...PRINTER resource is now locked and no other
   task may gain access to it. Print report.

KS_unlock(PRINTER);     /* release PRINTER lock */

SEE ALSO KS_lock, KS_lockw, KS_unlock
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KS_lockw

REQUEST EXCLUSIVE USE OF A RESOURCE,
 WAIT IF BUSY

CLASS Resource Management

SYNOPSIS KSRC  KS_lockw(RESOURCE resource)

DESCRIPTION The KS_lockw service provides a generalized means
of requesting or managing  exclusive use of a logical
resource. A logical resource can be anything, such as
a shared database, non-reentrant code (i.e.,
BIOS/DOS), math coprocessor or emulator library,
etc. Nested lock requests by the current owner are
supported. However, unlock requests by non-
owners are ignored.

If the specified resource is idle, it is marked BUSY
to prevent other tasks from using it. If the resource
is BUSY at the time of the request and is not owned
by the calling task, the calling task is blocked and
removed from the READY List until the task
currently using the resource unlocks it.

RETURN VALUE The function returns a value of RC_GOOD for the
initial KS_lock call by a task.

A value of RC_NESTED is returned if the calling
task already owns the resource.
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EXAMPLE The current task wants to output a system status
report to the system printer without interspersed
messages from other system monitors. When the
report is finished, exclusive use of the printer is to be
released.

If the printer is busy, do not proceed. Wait for it to
become available.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cres.h"          /* defines PRINTER */

KS_lockw(PRINTER);

...PRINTER resource is now locked and no other task
   may gain access to it

KS_unlock(PRINTER); /* release PRINTER lock */

SEE ALSO KS_lock, KS_lockt, KS_unlock
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KS_nop

NO OPERATION

CLASS Special

SYNOPSIS void  KS_nop(void);

DESCRIPTION The KS_nop function is included in the set of kernel
services for completeness.  It can serve as a means
of benchmarking performance for entry into and exit
from the kernel.

RETURN VALUE The function returns no value.

EXAMPLE Perform 10,000 iterations of the KS_nop kernel
service and compute the elapsed time of those calls
in units of system clock ticks.

#include "rtxcapi.h"       /* RTXC KS prototypes */

int i;
TICKS timestamp, et;

KS_elapse(&timestamp);        /* dummy for setup */
for (i = 0; i < 10000; i++)
   KS_nop();

et = KS_elapse(&timestamp); /* read elapsed time */
                            /* after 10000 loops */
printf("10000 KS_nops in %d ticks\n",et);
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KS_pend

FORCE A DONE SEMAPHORE
 TO A PENDING STATE

CLASS Intertask Communication and Synchronization

SYNOPSIS void  KS_pend(SEMA sema)

DESCRIPTION KS_pend forces the state of a semaphore to PEND-
ING if the state is currently DONE. If it is
WAITING, no change is made. Normally, the state
of a semaphore is automatically maintained by
RTXC. However, there may be a requirement to
wait on some event unconditionally, regardless of
whether it has previously occurred. In other words,
disregard prior occurrences of the event and wait for
the next instance of the event. Forcing the
semaphore associated with the event to a PENDING
state, followed closely by a call to an event wait
function, will achieve that result.

RETURN VALUE The function returns no value.

EXAMPLE Force semaphore SWITCH to the PENDING state
before waiting on the event associated with it.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"   /* defines SWITCH semaphore */

KS_pend(SWITCH);      /* force semaphore PENDING */
KS_wait(SWITCH);      /* wait on change-of-state */

SEE ALSO KS_wait, KS_waitm, KS_waitt, KS_pendm
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KS_pendm

FORCE MULTIPLE DONE SEMAPHORES
 TO PENDING STATE

CLASS Intertask Communication and Synchronization

SYNOPSIS void  KS_pendm(SEMA *semalist)

DESCRIPTION The KS_pendm function performs the same
operation as done by the KS_pend function except
that it operates on a list containing one or more
semaphores. All semaphores in the list which are in a
DONE state will be set to a PENDING state. This
directive reduces the number of kernel calls when
multiple semaphores must be set to PENDING.

A semaphore list is a null terminated array of
semaphore identifiers.

RETURN VALUE The function returns no value.

EXAMPLE The current task needs to set the semaphores
associated with the change-of-state events on two
pushbuttons. The semaphores are named SWITCH1
and SWITCH2. After forcing the PENDING state,
the task is to wait for either event to occur.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"  /* defines SWITCH1 & SWITCH2 */

SEMA semalist[] =
{
   SWITCH1,
   SWITCH2,
   0                 /* list terminator */
};

SEMA event;

KS_pendm(semalist);   /* forget switch histories */
event = KS_waitm(semalist);   /* wait for either */
                             /* switch to change */

SEE ALSO KS_pend, KS_wait, KS_waitm, KS_waitt
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KS_purgequeue

RESET QUEUE TO EMPTY STATE

CLASS Intertask Communication and Synchronization

SYNOPSIS void  KS_purgequeue(QUEUE queue)

DESCRIPTION The KS_purgequeue service forces a queue to a
known virgin condition (empty, no waiting tasks for
any full/empty conditions).  Note, any tasks waiting
to enqueue (due to Queue_Full condition) or
dequeue (due to Queue_Empty condition) will be at
risk.

RETURN VALUE The function returns no value.

EXAMPLE Two tasks, PUTTER and GETTER, need to begin
execution knowing that queue DATAQ is empty.
Before starting the tasks, DATAQ is cleared.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"    /* defines PUTTER & GETTER */
#include "cqueue.h"             /* defines DATAQ */

KS_purgequeue(DATAQ);    /* reset DATAQ to empty */

KS_execute(PUTTER);       /* start producer task */
KS_execute(GETTER);       /* start consumer task */
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SEE ALSO KS_dequeue, KS_dequeuet, KS_dequeuew,
KS_enqueue, KS_enqueuet, KS_enqueuew
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KS_receive

RECEIVE A MESSAGE

CLASS Intertask Communication and Synchronization

SYNOPSIS RTXCMSG  *KS_receive(MBOX mailbox,
                     TASK task)

DESCRIPTION The KS_receive function fetches messages from a
specified mailbox and returns the pointer to the
message. If there are no messages in the mailbox,
the function returns a NULL pointer to indicate the
empty condition.

If the TASK argument contains a value of zero, the
first message in the mailbox, from any sender, is
returned.  Because the messages are placed in the
mailbox in priority order as specified by the sender,
they are processed in the same sequence.

It is possible, however, to override the strict priority
processing. If the receiving task specifies a non-zero
task number in the calling sequence, the first
message in the mailbox from that task will be
returned.

RETURN VALUE The function returns a pointer to message if a
message was received.
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If no message was available, the function returns a
NULL pointer.

EXAMPLE A task wants to receive the next message in its
mailbox, MYMAIL, from any sender. If a message is
received, it will be processed and at the conclusion
of processing, the sending task will be notified. If no
message is in the mailbox, the task will execute
special code to deal with the situation.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"            /* defines MYMAIL  */
#include "rtxstruc.h"         /* defines RTXCMSG */
struct{
   RTXCMSG msghdr;  /* Message header (required) */
   char data[10];       /* start of message body */
} MYMSG;
MYMSG *msg;

/* receive next message from any task */
msg = (MYMSG *)KS_receive(MYMAIL,(TASK)0);
if (msg != (MYMSG *)0 )
{
   ... message received, process it ...
   KS_ack(msg); /* acknowledge message processed */
}
else {
        ... Deal with no message available
     }

SEE ALSO KS_ack, KS_receivet, KS_receivew, KS_send,
KS_sendt, KS_sendw
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KS_receivet

RECEIVE A MESSAGE,
WAIT FOR LIMITED TIME

IF MAILBOX EMPTY

CLASS Intertask Communication and Synchronization

SYNOPSIS RTXCMSG  *KS_receivet(MBOX mailbox,
                      TASK task,
                      TICKS timeout,
                      KSRC *ret_code)

DESCRIPTION The KS_receivet function fetches messages from a
specified mailbox and returns the pointer to the
message. If there are no messages in the mailbox,
the requesting task is blocked and removed from the
READY List. The task will remain blocked until an-
other task sends a message to the specified mailbox
or until the expiration of a period of time defined by
the timeout argument in the calling sequence.

When either the next message is sent to the mailbox,
or the timeout occurs, the waiting receiver task will
be unblocked and inserted into the READY List.
The function also returns a value indicative of how it
processed the request. This value is stored in the
address pointed to by the ret_code parameter in the
calling arguments. It is useful in determining which
event caused the resumption of the requesting task.
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If the task argument contains a value of zero, the
first message in the mailbox, from any sender, is
returned.  Because the messages are placed in the
mailbox in priority order as specified by the sender,
they are processed in the same sequence. It is
possible, however, to override the strict priority
processing. If the receiving task specifies a non-zero
task number in the calling sequence, the first
message in the mailbox from that task will be
returned.

If a message was received, the task is resumed with
a pointer to the message returned as the value of the
function. If the timeout occurred, the function
returns a NULL pointer as the value of the function
and stores the value RC_TIMEOUT via ret_code.

RETURN VALUE The function returns a pointer to the received
message if one was found in the mailbox. The value
RC_GOOD is also stored via ret_code.

If the timeout timer expires before there is any mail
sent to the mailbox, the function returns a NULL
pointer and stores the value RC_TIMEOUT via
ret_code.

EXAMPLE The current task is to receive the next message from
its mailbox, MYMAIL. If there is no mail in the
mailbox, the task is to wait for a period of up to 500
msec for something to arrive. If the 500 msec period
elapses without receipt of mail, the task is to resume
and perform a special code segment to handle the
timeout situation.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"            /* defines MYMAIL  */
#include "cclock.h"           /* defines CLKTICK */
#include "rtxstruc.h"         /* defines RTXCMSG */

struct{
   RTXCMSG msghdr;  /* Message header (required) */
   char data[10];       /* start of message body */
} MYMSG;
MYMSG *msg;
TICKS timeout = 500/CLKTICK;
KSRC ccode;

/* receive next message from any task */
if ( (msg = (MYMSG *)KS_receivet(MYMAIL, (TASK)0, timeout, &ccode)

      == (RTXCMSG *)0 )
{
   ... timeout occurred or there were no timer
       blocks available. Deal with it here.
}
else
{
   ... message received, process it.

   KS_ack(msg);               /* signal sender */
}

SEE ALSO KS_ack, KS_receive, KS_receivew, KS_send,
KS_sendt, KS_sendw
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KS_receivew

RECEIVE A MESSAGE,
 WAIT IF MAILBOX EMPTY

CLASS Intertask Communication and Synchronization

SYNOPSIS RTXCMSG  *KS_receivew(MBOX mailbox,
                      TASK task)

DESCRIPTION The KS_receivew function fetches messages from a
specified mailbox and returns the pointer to the
message. If there are no messages in the mailbox,
the requesting task is blocked and removed from the
READY List. The task will remain blocked until an-
other task sends a message to the specified mailbox.
When the next message is sent to the mailbox, the
waiting receiver task will be unblocked and inserted
into the READY List. The function will return a
pointer to the received message.

With a zero task number in the calling sequence, the
first message in the mailbox from any sender is
returned.  Because the messages are placed in the
mailbox in priority order as specified by the sender,
they are processed in the same sequence. It is
possible, however, to override the strict priority
processing. If the receiving task specifies a non-zero
task number in the calling sequence, the first
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message in the mailbox from that task will be
returned.

RETURN VALUE The function returns a pointer to the received
message.

EXAMPLE The task is to receive the next available message
from its mailbox MYMAIL. If there is no mail
available, the task is to wait until a message is sent
to the mailbox.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"            /* defines MYMAIL  */
#include "rtxstruc.h"        /* defines RTXCMSG */

struct{
   RTXCMSG msghdr;  /* Message header (required) */
   char data[10];       /* start of message body */
} MYMSG;
MYMSG *msg;

/* receive next message from any task */
msg = (MYMSG *)KS_receivew(MYMAIL, (TASK)0);

SEE ALSO KS_ack, KS_receive, KS_receivet, KS_send,
KS_sendt, KS_sendw
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KS_restart_timer

RESTART AN ACTIVE TIMER

CLASS Timer Management

SYNOPSIS KSRC KS_restart_timer(CLKBLK *timer,
                      TICKS period,
                      TICKS cycle_period)

DESCRIPTION The purpose of KS_restart_timer is to change the
initial or recycle period of an active timer. The
function is equivalent to a KS_stop_timer function
call followed by a KS_start_timer function.
KS_restart_timer combines both operations into a
single kernel service. It does not affect the status of
a PENDING semaphore associated with the timed
event. If the associated semaphore is in a DONE
state, however, it is set PENDING.

RETURN VALUE The function returns a value of RC_GOOD if the
timer was restarted without a problem.

A value of RC_TIMER_ILLEGAL is returned if
the timer does not have a valid clock block.

EXAMPLE Having previously allocated a timer block, a task
starts a one-shot timer with a duration of 250 msec
and associates the expiration of the time with
semaphore SWITCH. During the timer's initial
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period, it restarts it as a 1 second cyclic timer with a
new initial period of 1500 msec.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cclock.h"           /* defines CLKTICK */
#include "csema.h"             /* defines SWITCH */

CLKBLK *timer;

/* allocate timer block for task */
timer = KS_alloc_timer();

/* start a one-shot timer of 250 msec */
KS_start_timer(timer,250/CLKTICK,(TICKS)0,SWITCH);

... do some processing

/* then restart the timer as a 1-sec cyclic */
/* timer following a 1.5 second delay */
KS_restart_timer(timer, 1500/CLKTICK,
                        1000/CLKTICK);

SEE ALSO KS_alloc_timer, KS_free_timer, KS_start_timer,
KS_stop_timer
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KS_resume

RESUME A TASK

CLASS Task Management

SYNOPSIS void  KS_resume(TASK task)

DESCRIPTION KS_resume clears the suspended state of a task
caused by a prior KS_suspend operation.  If the re-
sumed task becomes runnable it is inserted into the
READY List at a position dependent upon its prior-
ity. If the resumed task is of higher priority than the
requesting task, a context switch is performed.
Otherwise, control is returned to the requesting task.

RETURN VALUE The function returns no value.

EXAMPLE A task suspends the analog input task, AIREADER,
performs some operations, and then resumes the
analog input task.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"           /* defines AIREADER */

KS_suspend(AIREADER);   /* suspend task AIREADER */

... perform some operations

KS_resume(AIREADER);     /* resume task AIREADER */
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SEE ALSO KS_suspend
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KS_send

SEND A MESSAGE ASYNCHRONOUSLY

CLASS Intertask Communication and Synchronization

SYNOPSIS void  KS_send(MBOX mailbox,
              RTXCMSG *msghdr,
              PRIORITY priority,
              SEMA sema)

DESCRIPTION KS_send sends a message asynchronously to the
specified mailbox. There may or may not be a task
waiting to receive the message from the specified
mailbox. If there is no waiting receiver task, the
message is inserted into the mailbox at a position
with respect to the priority given in the kernel
service function call.

If there is a receiving task waiting to receive a
message, the message is passed directly to the
receiver task. The receiver task is then unblocked
and, if found to be runnable, is placed into the
READY List at a position dependent on its priority.

If the receiving task is of higher priority than the
sending task, a task switch is performed.

If the receiving task is of lower priority than the
sending task, control is returned to the sending task.
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RETURN VALUE The function returns no value.

EXAMPLE Send a message asynchronously at priority 4 to
mailbox MAILBOX3. The message is in a structure
named mymessage. Associate the semaphore
GRAFSEMA with the completion of message
processing. After sending the message, perform
some other operations and then wait for the
completion of processing of the message.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"           /* defines GRAFSEMA */
#include "cmbox.h"           /* defines MAILBOX3 */
#include "rtxstruc.h"        /* defines RTXCMSG  */

struct {
   RTXCMSG msghdr;  /* Message header (required) */
   int command;         /* start of message body */
   char data[10];
} mymessage;

/* send msg to MAILBOX3 at a priority of 4 and */
/* associate semaphore GRAFSEMA with the message */
KS_send(MAILBOX3, &mymessage.msghdr, (PRIORITY)4, GRAFSEMA);
... do some more processing and then wait for
    the event associated with completion of
    message processing

KS_wait(GRAFSEMA);

SEE ALSO KS_receive, KS_receivet, KS_receivew, KS_sendt,
KS_sendw
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KS_sendt

SEND A MESSAGE SYNCHRONOUSLY
WITH TIME LIMITED

WAIT FOR ACKNOWLEDGMENT

CLASS Intertask Communication and Synchronization

SYNOPSIS KSRC  KS_sendt(MBOX mailbox,
               RTXCMSG *msghdr,
               PRIORITY priority,
               SEMA sema,
               TICKS timeout)

DESCRIPTION KS_sendt sends a message synchronously to the
specified mailbox. There may or may not be a task
waiting to receive the message from the specified
mailbox. If there is no waiting receiver task, the
message is inserted into the mailbox at a position
with respect to the message priority given in the
kernel service function call.

The sending task is removed from the READY List
and blocked by a wait on the message semaphore
specified in the function call. Simultaneously, a
timeout timer is established to limit the duration of
the wait to that amount of time specified by the
timeout argument in the function call. A duration of
zero (0) will not cause a timer to be started and is
thus equivalent to the kernel service KS_sendw.
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If there is a receiving task waiting to receive a
message, the message is passed to the receiver. The
receiver task is then unblocked and, if found to be
runnable, is placed into the READY List at a
position dependent on its priority.

The sending task will resume operation when it
receives either the acknowledgment that the receiver
task has completed processing the message or the
expiration of the timeout period occurs. The
function returns a value indicative of the form of
completion.

RETURN VALUE The function returns a value of RC_GOOD when
the message is successfully sent and processed
within the specified timeout duration.

If the timeout occurs, the function returns a value of
RC_TIMEOUT.

EXAMPLE The task synchronously sends a message located in
the structure mymessage to the mailbox
MAILBOX3. The priority of the message is to be 4
and the completion event is associated with
semaphore GRAFSEMA. A timeout period of 250
msec is to be used for the duration of the waiting
period. If the wait for acknowledgment of pro-
cessing exceeds 250 msec, handle the situation with
a special code segment.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"         /* defines GRAFSEMA */
#include "cmbox.h"         /* defines MAILBOX3 */
#include "cclock.h"        /* defines CLKTICK  */
#include "rtxstruc.h"      /* defines RTXCMSG  */

TICKS timeout = 250/CLKTICK;

struct {
   RTXCMSG msghdr;  /* Message header (required) */
   int command;     /* start of message body */
   char data[10];
} mymessage;

/* send message msg synchronously to MAILBOX3 at */
/* priority 4. Associate semaphore GRAFSEMA with */
/* the message. Wait up to 250 ms for message to */
/* be processed */
if (KS_sendt(MAILBOX3, &mymessage.msghdr, (PRIORITY)4, GRAFSEMA,
              timeout) == RC_GOOD)
{
   ... message sent and processed successfully
}
else
{
   ... message not completed within timeout period
}

SEE ALSO KS_ack, KS_receive, KS_receivet, KS_receivew,
KS_send, KS_sendw
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KS_sendw

SEND A MESSAGE SYNCHRONOUSLY,
WAIT FOR ACKNOWLEDGMENT

CLASS Intertask Communication and Synchronization

SYNOPSIS void  KS_sendw(MBOX mailbox,
               RTXCMSG *msghdr,
               PRIORITY priority,
               SEMA sema)

DESCRIPTION KS_sendw sends a message synchronously to the
specified mailbox. There may or may not be a task
waiting to receive the message from the specified
mailbox. If there is no waiting receiver task, the
message is inserted into the mailbox at a position
with respect to the priority given in the kernel
service function call.

The sending task is removed from the READY List
and blocked by a wait on the message semaphore
specified in the function call. If there is a receiving
task waiting to receive a message, the message is
passed to the receiver task. The receiver task is then
unblocked and, if found to be runnable, is placed
into the READY List at a position dependent on its
priority.
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The sending task will resume operation when it
receives the signal that the receiver task has
completed processing the message.

RETURN VALUE The function returns no value.

EXAMPLE The task synchronously sends a message located in
the structure mymessage to the mailbox
MAILBOX3. The priority of the message is to be 4,
and the completion event is associated with
semaphore GRAFSEMA. After sending the message,
the task waits for the signal that the message has
been processed.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"         /* defines GRAFSEMA */
#include "cmbox.h"         /* defines MAILBOX3 */
#include "rtxstruc.h"      /* defines RTXCMSG  */
struct {
   RTXCMSG msghdr;  /* Message header (required) */
   int command;     /* start of message body */
   char data[10];
} mymessage;

/* send message msg synchronously to MAILBOX3 at */
/* priority 4. Associate semaphore GRAFSEMA with */
/* message. Wait for the message to be processed */
KS_sendw(MAILBOX3, &mymessage.msghdr, (PRIORITY)4, GRAFSEMA);

SEE ALSO KS_receive, KS_receivet, KS_receivew, KS_send,
KS_sendt
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KS_signal

SIGNAL A SEMAPHORE

CLASS Intertask Communication and Synchronization

SYNOPSIS KSRC  KS_signal(SEMA sema)

DESCRIPTION KS_signal sets the state of a specified semaphore to
DONE.  If the semaphore is currently in a WAIT
state, the Event Wait state of the waiting task is
removed, and the semaphore is set PENDING.  If
the waiting task becomes runnable, it is inserted into
the READY List at a position dependent on its
current priority. A context switch will occur if the
task which was waiting on the signaled semaphore is
of higher priority than the signaling task.

If the state of the semaphore was either PENDING
or DONE, the semaphore is placed in the DONE
state, and the current task is resumed following the
KS_signal function call.

RETURN VALUE The function returns a value of
RC_MISSED_EVENT if the semaphore is already
in the DONE state.

EXAMPLE The task signals semaphore SWITCH to indicate that
the associated event has occurred.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"       /* defines SWITCH */

KS_signal(SWITCH);       /* signal sema SWITCH */

SEE ALSO KS_pend, KS_pendm, KS_signalm, KS_wait,
KS_waitm, KS_waitt
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KS_signalm

SIGNAL MULTIPLE SEMAPHORES

CLASS Intertask Communication and Synchronization

SYNOPSIS void  KS_signalm(SEMA *semalist)

DESCRIPTION The KS_signal functions performs like the
KS_signal kernel service except that it signals all
semaphores found in a list of semaphores provided
as an argument to the function. The list must be null
terminated. Its intent is to minimize RTXC kernel
calls and context switching when multiple
semaphores need to be signaled as one logical
operation.

Unlike KS_signal, KS_signalm does not return a
value when signaling a semaphore which is already
in a DONE state.

RETURN VALUE The function returns no value.

EXAMPLE The task signals semaphores ISWITCH and
RESTART that a particular event has occurred.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"   /* defines ISWITCH, RESTART */

SEMA semalist[] =
{
   ISWITCH,
   RESTART,
   0                     /* null terminated list */
};

KS_signalm(semalist);

SEE ALSO KS_pend, KS_pendm, KS_signalm, KS_wait,
KS_waitm, KS_waitt
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KS_start_timer

START A TIMER

CLASS Timer Management

SYNOPSIS CLKBLK  *KS_start_timer(
                    CLKBLK *timer,
                    TICKS initial_period,
                    TICKS cycle_time,
                    SEMA sema)

DESCRIPTION The KS_start_timer function starts a timer whose
handle is given in the argument list to the function.
The timer can be cyclic or one-shot. A one-shot
timer has an initial_period argument greater than
zero (>0) and a cycle_time argument value of zero
(0). A cyclic timer will have both the initial_period
and cycle_time argument values greater than zero
(>0). The duration of the timer's initial_period and
the cycle_time period are specified in terms of the
system clock ticks.

The timer expiration event is associated with a
semaphore as defined in the arguments of the func-
tion call. At the time of the function call, the
semaphore is forced to a PENDING state so that the
task may subsequently call a blocking function such
as KS_wait to await the event. After the timer is
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inserted into the Active Timer List, the current task
is resumed.

A NULL pointer can be passed in place of the
CLKBLK pointer and the function will automatically
assign the timer block and return a pointer to the
timer. If no timer blocks are available, the function
returns a NULL pointer and the task will have to
deal with that situation with special code.

Two special features of the KS_start_timer function
are as follows. If the function is called with an
initial_period of zero (0) and a cycle_time greater
than zero (>0), the associated semaphore will be
signaled and a cyclic timer will be started. When
KS_start_timer is called with both the initial_period
and cycle_time equal to zero (0), the only action
taken is that the associated semaphore will be
signaled.

RETURN VALUE The function returns the pointer to the timer block
used for the timer.

The function returns a NULL pointer if an attempt
was made to do an automatic allocation of a timer
block and there were none available.

EXAMPLE A task wants to start a timer using a previously
allocated timer block timer1. The timer is to have an
initial period of 150 msec and a cyclic period of 100
msec. The time expiration event is associated with
semaphore SEMA6. After starting the timer, the task
waits for the timer to expire.
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After the first timer's initial period expires, a second
timer having only an initial period of 150 msec is
also started but the timer block is to be
automatically allocated. The second timer is
associated with semaphore SEMA7. After the
second timer is started, the task is to wait for either
timer to expire.

#include "rtxcapi.h"     /* RTXC KS prototypes */
#include "cclock.h"      /* defines CLKTICK */
#include "csema.h"       /* defines SEMA6, SEMA7 */

SEMA semalist[] =
{
   SEMA6, SEMA7,
   0                     /* null terminated list */
};
SEMA sema;
CLKBLK *timer1, *timer2;

timer1 = KS_alloc_timer();

/* start timer with initial period of 150 ms and */
/* cyclic period of 100 ms. */
KS_start_timer(timer1, 150/CLKTICK, 100/CLKTICK, SEMA6);

KS_wait(SEMA6);     /* wait for timer to expire */

... Do some more processing, then

/* start one shot timer with duration of 150 ms */
/* have system automatically allocate timer block*/
timer2 = KS_start_timer((CLKBLK *)0, 150/CLKTICK, (TICKS)0, SEMA7);
if (timer2 == (CLKBLK *(0)))
{
   ... No timer blocks available. Deal with it here
}
else
{
   sema = KS_waitm(semalist); /* wait for either */
                              /* timer to expire */
}
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SEE ALSO KS_alloc_timer, KS_restart_timer, KS_stop_timer
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KS_stop_timer

STOP AN ACTIVE TIMER

CLASS Timer Management

SYNOPSIS KSRC  KS_stop_timer(CLKBLK *timer)

DESCRIPTION The KS_stop_timer service function stops the spec-
ified timer, the pointer to which is provided as the
function argument, and removes it from the list of
active timers.

NOTE: A task may stop only those timers which it
has initiated via a prior KS_start_timer() or
KS_restart_timer().

RETURN VALUE If the timer was active when stopped, the function
returns a value of RC_GOOD.

If timer was inactive, the function returns a value of
RC_TIMER_INACTIVE.

If the task attempts to stop a timer it does not own,
the function returns a value of
RC_TIMER_ILLEGAL.

EXAMPLE A task allocates a timer block and stores the handle
to it in pointer p. If there is a timer block available,
the task needs to wait no longer than 250 msec for
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the occurrence of either of two switch closure
events associated with semaphores SWITCH1 and
SWITCH2. After starting a 250 msec one-shot timer,
the task waits for the occurrence of either event or
the expiration of the timer. The timer expiration is
associated with semaphore WATCHDOG. If the task
continues as a result of a switch closure, the task is
to stop the one-shot timer and free it.

If there are no timer blocks available when
attempting to assign pointer p, the task must execute
special code to deal with the situation.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"
#include "cclock.h"
#include "csema.h"

CLKBLK *p;
TICKS period = 0;          /* one-shot timer */
TICKS initial = 250/CLKTICK;

SEMA semalist[] = {
   WATCHDOG,
   SWITCH1,
   SWITCH2,
   0                      /* list terminator */
}

if ((p = KS_alloc_timer()) != (CLKBLK)0)
{
   KS_start_timer(p, initial, period, WATCHDOG);

   sema = KS_waitm(semalist); /* wait for switch */
   if (sema != WATCHDOG)
      KS_stop_timer(p);       /* stop timer */

   ... continue processing
}
else
{
   ... no timer available. Deal with it here
}

SEE ALSO KS_alloc_timer, KS_restart_timer, KS_start_timer
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KS_suspend

SUSPEND A TASK

CLASS Task Management

SYNOPSIS void  KS_suspend(TASK task)

DESCRIPTION The KS_suspend directive causes the specified task
to be placed into a suspended state and removed
from the READY List.  The suspended state will re-
main in force until it is removed by a KS_resume or
KS_execute kernel service function invoked by an-
other task. A task may suspend itself.  An argument
value of 0 indicates the SELF task.

RETURN VALUE The function returns no value.

EXAMPLE The current task suspends another task,
LKDETECT, and then suspend itself.

#include "rtxcapi.h"      /* RTXC KS prototypes */
#include "ctask.h"      /* defines LKDETECT */

KS_suspend(LKDETECT);   /* suspend LKDETECT task */

KS_suspend(TASK(0));    /* suspend self */

SEE ALSO KS_resume
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KS_terminate

TERMINATE A TASK

CLASS Task Management

SYNOPSIS void  KS_terminate(TASK task)

DESCRIPTION KS_terminate stops a task's operation by removing
the task from the READY List if it is runnable and
by setting its status to INACTIVE. A task number
of zero (0) indicates self-termination. This is the
normal mode of use for this kernel service. While it
is possible to terminate another task, such usage
should only be done under circumstances where the
terminator knows that the act will not jeopardize
system integrity.

In all cases following self-termination, the next
highest priority task in a runnable state will execute
next. If a task has an active timeout timer, it is
stopped and removed from the list of active timers.
If the task is a waiter on some kernel object, it will
be removed from that object's list of waiters. If the
task's Task Control Block was dynamically
allocated, the TCB is returned to the Free TCB
Pool.

WARNING: Other than the items mentioned above,
tasks that are currently using, or have allocated,



  RTXC User's Manual KERNEL SERVICES

  Copyright  Embedded System Products, Inc. 175

kernel objects are not "cleaned up" by the ter-
mination process. It is the programmer's
responsibility to ensure that all such system elements
are released to the system prior to the act of
termination.

RETURN VALUE The function returns no value.

EXAMPLE The current task terminates another task, TASKBX,
and then terminates itself.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"             /* defines TASKBX */
#defines SELFTASK (TASK(0)) /* defines this task */

KS_terminate(TASKBX);   /* terminate task TASKBX */

KS_terminate(SELFTASK);  /* now terminate self */

SEE ALSO KS_execute
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KS_unblock

UNBLOCK A RANGE OF TASKS

CLASS Task Management

SYNOPSIS void  KS_unblock(TASK start,
                 TASK end)

DESCRIPTION The KS_unblock directive is the opposite of the
KS_block kernel service function. It may be used to
enable the operation of one or more tasks, the range
of which is specified by the starting and ending task
numbers in the function arguments.  The range of
tasks to be unblocked begins with the specified start
task and includes the specified end task.  If the
specified end task of the range is the current task
(end task = 0), the unblocking action will range from
the start task up to, but not including the current
task.

RETURN VALUE The function returns no value.

EXAMPLE The current task unblocks tasks 5 through 10
inclusively.

#include "rtxcapi.h"       /* RTXC KS prototypes */

KS_unblock(5,10);/* remove blocks for tasks 5-10 */
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SEE ALSO KS_block
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KS_unlock

RELEASE LOGICAL RESOURCE

CLASS Resource Management

SYNOPSIS KSRC  KS_unlock(RESOURCE resource)

DESCRIPTION The KS_unlock kernel service is the opposite of the
KS_lock function.  KS_unlock releases a logical re-
source previously locked by the requesting task.
Only the task which locked the resource, i.e., the
resource "owner",  may unlock that resource. Un-
locking a resource which is not currently owned
causes no change in the state of the resource and a
value of RC_BUSY will be returned to the caller.

Normally, locks and unlocks of a resource will occur
in pairs. That is, for each KS_lock of a specific
resource, there will be a corresponding KS_unlock
of that same resource by the locking task. However,
RTXC supports nested locks of a resource by the
same task. Nesting occurs when a resource owner
locks the resource again, be it deliberately or in-
advertently. When unnesting, the owner task must
issue the same number of unlocks as there were
locks in the nest. A return value of RC_NESTED
will be returned until the resource is no longer
nested. Then, RC_GOOD will be returned for the
final unlock.
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RETURN VALUE The function returns RC_GOOD when the resource
is unlocked and not nested.

A value of RC_NESTED is returned if the calling
task has not issued as many unlocks as locks.

If the resource is owned by another task, a value of
RC_BUSY is returned to the calling task.

EXAMPLE The current task needs to update a resident
database, and it must be done without other tasks
preempting the operation. Thus, exclusive access to
the database is necessary during the update
operation. The database is associated with resource
DATABASE. After performing the update, the task
will permit other tasks to access the database.

#include "rtxcapi.h"     /* RTXC KS prototypes */
#include "cres.h"        /* defines DATABASE */

KS_lockw(DATABASE);     /* grab resource */
update_db();           /* update shared database */
while(KS_unlock(DATABASE) == RC_NESTED)
       /* release resource */

SEE ALSO KS_lock, KS_lockt, KS_lockw
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KS_user

USER DEFINED KERNEL SERVICE

CLASS Special

SYNOPSIS int  KS_user(int (*func) (void *),
             void *arg)

DESCRIPTION The user may execute the specified function, func, as
if it were an RTXC kernel service function. This
basically defines the function to be indivisible with
respect to preemption. Interrupts are permitted and
serviced during execution of the function.

The KS_user calling sequence requires a pointer to
the function, func, and a pointer to an arbitrary
structure, arg, which will be passed to function,
func, when invoked. The return value from the spec-
ified function, func, will be returned to the caller as
the value of the kernel service, KS_user.

RETURN VALUE The KS_user function returns the return value of the
specified function.

EXAMPLE The task wants to call a function, foobar, so that it
can execute as though it were a kernel service.
Arguments to the function are found in the structure,
args, the pointer to which is passed in the calling
arguments to the function.
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#include "rtxcapi.h"       /* RTXC KS prototypes */

int status;
struct fooarg
{
   int opcode;
   int val;
} args;

extern int foobar(struct fooarg *);

/* execute function foobar as a KS */
status = KS_user(foobar, &args);
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KS_wait

WAIT ON EVENT

CLASS Intertask Communication and Synchronization

SYNOPSIS KSRC  KS_wait(SEMA sema)

DESCRIPTION The KS_wait function is a fundamental function in
RTXC.  It is used to block a task for a specified
event to occur.  The event must be associated with
the given semaphore.  If the semaphore is found to
be in a PENDING state, the task is placed into an
Event Wait state and removed from the READY
List. The semaphore state is changed to WAITING.

If the semaphore is in a DONE state, no wait occurs
nor is the task blocked. Instead, the task resumes
immediately returning a code indicative of the
success of the wait.

The state of the given semaphore should be either in
a PENDING or DONE state when KS_wait is
called. If it is already in a WAITING state, the
function returns immediately with a value indicating
the conflicting semaphore usage. In this conflict
situation the function does not change the
semaphore state. It will be the responsibility of the
user to resolve the conflict.
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RETURN VALUE The function returns a value of RC_GOOD if the
wait was successful.

If the semaphore was already in a WAITING state,
the function returns a value of
RC_WAIT_CONFLICT.

EXAMPLE The current task needs to synchronize its operation
with the occurrence of a keypad character being
pressed. The event is associated with semaphore
KEYPAD.

#include "rtxcapi.h"   /* RTXC KS prototypes */
#include "csema.h"   /* defines KEYPAD */

KS_wait(KEYPAD);     /* wait for KEYPAD hit sema */

SEE ALSO KS_pend, KS_pendm, KS_signal, KS_signalm,
KS_waitm, KS_waitt
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KS_waitm

WAIT ON MULTIPLE EVENTS

CLASS Intertask Communication and Synchronization

SYNOPSIS SEMA  KS_waitm(SEMA *semalist)

DESCRIPTION The KS_waitm service performs the same function
as the KS_wait directive, except that it uses a list of
semaphores associated with the various events. The
states of the listed semaphores must follow the same
rules as for KS_wait. The KS_waitm function
operates as a logical OR, in that the occurrence of
an event associated with any one of the semaphores
in the list will cause resumption of the waiting task.

RETURN VALUE The function returns the identifier of the semaphore
associated with the event which occurred.

NOTE: In the situation where multiple events
simultaneously occur, the function returns the
semaphore number of the first event serviced. The
semaphores associated with the other events which
occurred will be in a DONE state. Each subsequent
call to the KS_waitm service will immediately return
the identity of the next semaphore in the list which is
in a DONE state. In this manner all events will be
correctly processed.
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EXAMPLE The current task needs to know when any of three
events occurs. Two of the events, SWITCH1 and
SWITCH2, are associated with switch closures while
the third is associated with a timer, TIMERA. When
any one happens, the task performs a code segment
specific to that event.

#include "rtxcapi.h" /* RTXC KS prototypes */
#include "csema.h"   /* defines SWITCH1, SWITCH2,
                                          TIMERA */
SEMA cause;
SEMA semalist[] =
{
   SWITCH1,
   SWITCH2,
   TIMERA,
   0             /* null terminated list */
};
for (;;)
{
   /* wait for any of 3 events */
   cause = KS_waitm(semalist);
   switch(cause)
   {
      case SWITCH1:
         ... process SWITCH1 event...
         break;

      case SWITCH2:
         ... process SWITCH2 event...
         break;

      case TIMERA:
         ... process TIMERA event...
         break;

   }  /* end of switch */
}  /* end of forever */

SEE ALSO KS_wait, KS_signal



  KERNEL SERVICES RTXC User's Manual

  186 Copyright  Embedded System Products, Inc.

KS_waitt

TIME LIMITED WAIT ON EVENT

CLASS Intertask Communication and Synchronization

SYNOPSIS KSRC  KS_waitt(SEMA sema,
               TICKS timeout)

DESCRIPTION The KS_waitt is used to block a task for a limited
period of time while waiting for a specified event to
occur. The event must be associated with the given
semaphore. The state of the given semaphore should
be either in a PENDING or DONE state when
KS_waitt is called.

If the semaphore is found to be in a PENDING
state, the task is placed into an Event Wait state and
removed from the READY List. The semaphore
state is changed to WAITING. At the same time, a
timeout timer is started with a period defined by the
calling argument, timeout.

If the semaphore is in a DONE state at the time of
the function call, no wait occurs nor is the task
blocked. Instead, the task resumes immediately.

Either the occurrence of the timeout or the event
will cause the requesting task to resume. The
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function returns a value indicative of the cause of the
task's resumption.

The state of the given semaphore should be either in
a PENDING or DONE state when KS_wait is
called. If it is already in a WAITING state, the
function returns immediately with a value indicating
the conflicting semaphore usage. In this conflict
situation the function does not change the
semaphore state. It will be the responsibility of the
user to resolve the conflict.

RETURN VALUE The function returns a value of RC_GOOD if the
expected event occurs within the time of the timeout
duration.

If a timeout occurs, the function returns a value of
RC_TIMEOUT.

If the semaphore is already in a WAITING state at
the time of the function call, the function returns a
value of RC_WAIT_CONFLICT.

EXAMPLE The current task needs to wait for a keypad
character to be pressed, but it can't wait for more
than 100 msec as it has other jobs to do. It uses the
KS_waitt kernel service to perform a time limited
wait on the event, KEYPAD.
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#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"         /* defines KEYPAD */
#include "cclock.h"        /* defines CLKTICK */

/* wait 100 msec for KEYPAD to be hit */
if(KS_waitt(KEYPAD, 100/CLKTICK) == RC_GOOD)
{
   ... keypad was hit, process the event
}
else
{
   ... keypad not hit and timeout happened
       or no timers were available, or
       a Wait Conflict exists
}

SEE ALSO KS_pend, KS_signal, KS_wait
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KS_yield

YIELD CPU CONTROL

CLASS Task Management

SYNOPSIS KSRC  KS_yield(void)

DESCRIPTION The KS_yield function permits a voluntary release of
control by a task without violating the policy of the
highest priority runnable task being the current task.
This service is of use only when there are two or
more tasks operating at the same priority. When
KS_yield is invoked and there is at least one more
task in the Ready List at the same priority, the
calling task is removed from the READY List and
reinserted into the READY List immediately
following the last runnable task having the same
priority. The task remains unblocked.

Yielding when there is no other task at the same
priority causes no change in the READY List, and
the calling task is immediately resumed.

RETURN VALUE If there is another task at the same priority, the
function yields CPU control to it and returns a value
of RC_GOOD. If no yield can occur, the function
returns a value of RC_NO_YIELD.

EXAMPLE The current task has reached a point in its
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processing where it will yield to another task if that
task is running at the same priority as the current
task. If not, this kernel service operates without
changing the READY List.

#include "rtxcapi.h"     /* RTXC KS prototypes */

/* yield to next READY task at same priority */
if (KS_yield() == RC_NO_YIELD)
{
   ... no READY task exists at same priority level
       take whatever action is required
}
/* otherwise, the yield was successful */

SEE ALSO KS_defpriority
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SECTION 7

DEVICE DRIVERS

_____________________________________

INTRODUCTION Device drivers are special programs which provide
an organized software interface between a physical
device and the application programs which use it.
The intent of a device driver is to mask the specifics
of the device's hardware peculiarities from the
application software. By doing so, the application
code need only conform to the protocol which the
device driver expects in order to perform a function.
Each device driver may have a unique protocol
related to its function. For instance, the interface
between a task and a disk driver would be different
than between a task and an analog-to-digital
converter.

In order to accommodate the wide range of devices
which are found in real time systems, device drivers
in RTXC are structured as tasks. As a task, a device
driver has the most flexible environment with
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complete access to system resources via the
executive service requests. In some cases, a device
driver may even require more than one task to
perform its required functions.
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INTERRUPT
HANDLING BASICS

A device attached to a computer often makes use of
an interrupt to indicate completion of a function or
some event associated with its operation. Interrupts
are efficient in a multitasking design in that they
permit the CPU to continue doing useful work
without wasting time waiting for a device to perform
some function.

With the use of interrupts, the device performs its
designated function and indicates that fact by
asserting an interrupt request. When dealing with
devices which generate interrupts, the system must
have a way of acknowledging an interrupt request,
identifying the requesting device, breaking the
program flow, and then servicing the device to
remove the interrupt.

Much of what transpires in interrupt handling is
actually done in hardware. More is done in some
cases, less in others. It depends on the system. It is
quite common, for example, for processor hardware
to be able to recognize an interrupt request,
acknowledge it, identify the device, and to vector
CPU control directly to a service routine to perform
the functions necessary to remove the interrupt.

After handling the interrupt, the system is allowed to
continue as though nothing had happened. Indeed,
all interrupt handling must be totally transparent to
normal system operations.
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Interrupts and
Preemption

Interrupts are what their name implies, a breaking of
the normal flow of system operation. Interrupts
require that they be serviced before the system can
return to its normal operations. Thus, they are given
a processing priority above that of normal
operations. This priority leads to the necessity of
creating a method for dealing with interrupts and
their consequences to the flow of system operations.

Interrupt handling can occur at any time and usually
requires some part of the processor's context in
order to service the interrupt. One fundamental
requirement in interrupt handling, therefore, is that
the processor state must be saved to the degree that
it can be restored in the future without loss of
context.

A device causing an interrupt needs servicing in
order to remove the source of the interrupt. But
there may be some detail of the device's operation
which requires that it be performed as quickly as
possible at the task level. A direct consequence of
the interrupt is the potential to suspend current
operations while a high priority task performs the
device's needed operations. In other words, an
interrupt may require the system to switch from the
task being performed at the time of the interrupt to
another task of higher priority. This is the
fundamental idea behind the policy of preemption.

Stacks RTXC supports two types of stacks, task stacks and
a system stack. While they are used in identical



  RTXC User's Manual DEVICE DRIVERS

  Copyright  Embedded System Products, Inc. 7-5

manners, it is important to understand why the two
exist and when they are employed.

Task
Stack

Every task has a stack which contains its context.
Function arguments, automatic variables, and
preempted processor states all share the task's stack
space. When the task is granted control by RTXC, it
is the task's stack which is the system's active stack.
The active stack has a pointer to its top somewhere
in the processor context. This stack pointer is
normally found in the CPU register set. If not in
hardware, it is in a software construct known to and
managed by the C compiler and serves the same
purpose. Either can be referred to as the stack
pointer.

When the processor's stack pointer points to the top
of the task's stack, an interrupt will cause the
processor state to be stored on the task's stack. As it
was the task which had CPU control when the
interrupt occurred, the stacked processor state is
actually the task's state. Thus, the task's state is
preserved.

System
Stack

If an ISR runs with interrupts enabled, permitting
higher priority interrupts to be serviced, it is not
desirable to store a second processor state on the
task's stack. Instead, RTXC switches to a System
Stack whenever processing is active for an interrupt
which occurred at the task level. Any new interrupts
will have their contexts saved on the System Stack
instead of the task's stack. This kind of stack usage
minimizes the amount of space required for each
task's stack, a desirable feature when working with



  DEVICE DRIVERS RTXC User's Manual

  7-6 Copyright  Embedded System Products, Inc.

systems which have a tight RAM budget.
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INTERRUPT
SERVICE
ROUTINES

In RTXC, a device which employs interrupts for
event notification is composed of two parts:  the
driver task, and an  (ISR).  The purpose of the task
is to initiate device operations and to deal with data
flow requests from other tasks. The purpose of the
ISR is to service the device when it causes an
interrupt. Usually the task and its related ISR are
very closely coupled.

The general philosophy of RTXC drivers is to
minimize the time spent in the interrupt service
routine and let the task portion handle the real work
of the driver. This design concept places few
functional restrictions on the design of both the task
and the ISR.

Basic ISR Flow RTXC interrupt servicing follows a definite
procedure. Section 3 described how ISR processing
begins in an assembly language routine, the
prologue, and then branches to a C routine for the
specific device servicing. The C routine returns to a
second assembly language routine, the epilogue,
from which normal operations are resumed.

Prologue The first level assembly language routine should
always do the following steps:

1. Save the processor state.

2. Handle any requirement for switching stacks.
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3. Call a user written C routine to service the
interrupt.

Saving the processor state in Step 1 may be
performed by hardware on some processors. If not,
it must be done by software in the early stages of
interrupt processing. The processor state is always
stored on the currently active stack.

In Step 2, the ISR prologue must determine if it is
necessary to switch stacks. When operating
normally, the Current Task's stack is the active stack.
An interrupt always forces a stack change to the
System Stack if the current stack is a task stack. The
prologue must establish the stack pointer for
whichever stack is appropriate for the ISR's
operation. For example, a call by a task for a kernel
service will force a change to the System Stack. An
interruption of an ISR will not cause a stack switch
because the first interrupt caused a switch to the
System Stack.

After saving the complete register set on the stack,
and, if necessary, changing the stack pointer to the
System Stack, the pointer to the top-of-stack of the
interrupted process is pushed on the System Stack.
This copy of the stack pointer, called a frame
pointer, is used as the argument for the user-written
device servicing routine.

Device
Servicing

The device servicing routine portion of the ISR in
Step 3 is normally written in C. Ideally, the majority
of it should be performed with interrupts enabled to
allow other exceptions to be serviced.  Likewise, the
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clearing of the hardware interrupt registers and
devices should be performed as early as possible in
the logic to allow for other interrupts at the same
level to function. The routine then processes the
interrupt as needed.

Most ISRs are associated with a single event and
consequently need only a single semaphore
associated with the event. Usually the signaling of
the event is combined atomically into the exit logic
of KS_ISRexit() (see below). However, some ISRs
are associated with multiple events and multiple
semaphores and it may be necessary to signal more
than one during the course of the device servicing
routine. RTXC ISRs are permitted to do so by using
the special service KS_ISRsignal(). One semaphore
can be signaled for each call to KS_ISRsignal(), the
identifier of the semaphore being the only argument
to the function.

When the device servicing routine of the ISR
reaches a point of completion, it needs to inform
RTXC of that fact. It does so by calling the Interrupt
Service Routine Exit function, KS_ISRexit(), passing
it the frame pointer of the interrupted process. One
additional argument, an identifier of the semaphore
associated with the interrupt, may be employed to
cause that semaphore to be signaled.

One goal in the RTXC design is to be as hardware
independent as possible.  The primary areas that are
hardware dependent are those concerned with
interrupt service and the register context switch.
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Epilogue The last element in the basic flow of an ISR is the
epilogue. It is written in assembly language routine
and receives the frame pointer of the highest priority
task in the Ready List as returned from
KS_ISRexit(). The function does the following
operations:

1. Switches to the appropriate stack of the process
to be resumed.

2. Restores the context of the highest priority task
in the READY List.

3. Resumes normal system operations.
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COMMON
ISR EXIT
FUNCTION

The RTXC Interrupt Service Routine Exit Function,
KS_ISRexit(), exists to perform those processor
independent functions which all interrupt handling
must do, including signaling one or more
semaphores, determining interrupt nesting level, and
performing a context switch if necessary.

The ISR device servicing routine calling
KS_ISRexit() may pass an argument indicating that
the semaphore associated with the interrupt is to be
signaled. If so, the semaphore handle is appended to
the Signal List. However, actual signaling of the
semaphores in the Signal List does not occur until
KS_ISRexit() determines that there is no other
interrupt processing pending. This must be done
since it is possible for interrupts to be nested (see
below). Returning to the point of the original
exception cannot occur until that interrupt has been
completely serviced. As each ISR completes and
calls KS_ISRexit(), the exit logic checks to see if the
current interrupt occurred in an ISR or a task. If an
ISR was interrupted, KS_ISRexit() ends and causes
resumption of the interrupted ISR.

When it is determined that the ISR calling
KS_ISRexit() is the one which interrupted a task, the
exit logic causes all of the semaphores in the Signal
List to be signaled. As each listed semaphore is
signaled, any task waiting on the associated event
has its WAIT state removed. If the task is found to
be completely unblocked, it is made runnable and
inserted into the Ready List. When all semaphores in
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the list have been similarly processed, the highest
priority runnable task becomes the current task and
is resumed at the point indicated by its stored
context. Thus, nested interrupts and re-entrant ISRs
are handled cleanly, quickly, and automatically by
RTXC.
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NESTED
INTERRUPTS

One common problem area concerning interrupts is
nesting of interrupts (different levels) and reentrancy
on the same hardware interrupt level.  These are
handled by RTXC in different manners according to
the nature of the particular processor. It may be by
simply maintaining an internal interrupt counter, or,
by a more complex method related to
processor/interrupt priority levels. Regardless of the
technique, it is in the initial interrupt service for each
interrupt that it is implemented. The method for
implementing this feature is supplied as part of the
RTXC distribution and is peculiar to the processor
and C compiler being employed.
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INTERRUPT
HANDLING
CAVEATS

An important factor in interrupt processing
throughput is the length of time interrupts are
disabled during interrupt handlers.  On all interrupts,
interrupts must be disabled long enough to execute
the code necessary to set up the interrupt nesting
control mechanism. After performing that logic,
interrupts may be enabled.  This logic is very
processor dependent and is supplied as part of the
standard RTXC Distribution.

RTXC imposes rules on the construction of interrupt
service routines that the user must observe. Perhaps
the most important of these rules is that an ISR
should make no calls to RTXC kernel services
other than to those in the special ISR class. (See
KS_ISRalloc(), KS_ISRexit(), KS_ISRsignal(), and
KS_ISRtick()) Such misuse of a kernel service by an
ISR can cause corruption of the System Stack with
indeterminate consequences. If it is necessary to call
a kernel service, get out of the ISR as quickly as
possible and into the task level part of the driver
where complete access to RTXC executive services
is available.
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COPROCESSOR
CONTEXT

The coprocessor (FPU) context typically involves
several floating point registers with a few bytes of
status and control information. For instance, on the
iAPX 8087/80287 coprocessors, the context is 94
bytes. From the size of the context, it is impractical
to swap the FPU context along with CPU context
on every task switch. Real-time systems, typically
have only a small number of the tasks in the entire
suite of tasks which require floating point support.
To minimize context switch time, RTXC tasks are
categorized at RTXCgen time as having a FPU
requirement or not. Context switch time is then
optimized by performing the FPU context swap only
on demand. Demand swapping means that the
context will be swapped only when granting control
to a task which uses the FPU that is different than
the last task to use the FPU. These combined
techniques provide efficient sharing of a math
coprocessor between multiple tasks.
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SECTION 8

RTXCbug DEBUGGING TOOL

_____________________________________

INTRODUCTION
TO RTXCbug

is the system level debugging tool for RTXC. Its
purpose is to provide snapshots of RTXC internal
data structures as well as perform some limited task
control. RTXCbug operates as a task and is usually
set up as the highest priority task. Whenever
RTXCbug runs, it freezes the rest of the system,
thereby permitting coherent snapshots of RTXC
system data components. RTXCbug is not intended
as a replacement for other debugging tools but is
meant to assist the user in tuning the performance of
or checking out problems within the RTXC
environment.

RTXCbug uses the input and output ports of a user-
defined console device. The console device is
usually a keyboard and a CRT display. Commands
are given to RTXCbug via the console input port,
and output from RTXCbug is displayed on the
console output device. These devices may be
reassigned during a system generation procedure.
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Because RTXCbug usually operates as the highest
priority task in the system, all other tasks are
blocked except for the console input and output
drivers. All interrupts are serviced as usual while
RTXCbug is active, but lower priority tasks are not
dispatched. Active timers are not adjusted while
RTXCbug is active, as that could cause the timer to
behave improperly.
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ENTRY INTO
RTXCbug

RTXCbug is designed to be entered through two
different mechanisms.
1. The user entering an exclamation point (!) on the

console input device.

2. By a task calling a special function within
RTXCbug.

Once RTXCbug is entered, the version of RTXC and
the main menu are displayed as:

** RTXCbug - RTXC x.xx   mm/dd/yy

  K - RTXC
  G - Go to Multitasking Mode
  X - Exit RTXCbug

where x.xx is the version number and mm/dd/yy is
the date of that version. The menu is followed by the
RTXCbug command prompt:

RTXCbug>

Selecting "K" causes the following prompt to be
displayed.

RTXCbug - RTXC Objects>

From the RTXC command prompt, you may enter
any of the primary RTXCbug commands. All
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commands must be terminated by an Enter (<cr>)
key.
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RTXCbug
COMMANDS

Whenever you wish to review the RTXCbug
command options, you may display the RTXCbug
Command Menu by entering an "H" (or "h")
followed by an Enter (<cr>) key in response to the
RTXCbug prompt. The Command Menu appears as:

T - Tasks
M - Mailboxes
P - Partitions
Q - Queues
R - Resources
S - Semaphores
C - Clock/Timers
K - Stack Limits
Z - Zero Partition/Queue/Resource Statistics
$ - Enter Task Manager Mode
# - Task Registers
G - Go to Multitasking Mode
H - Help
U - Return to Main Menu
X - Exit RTXCbug
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TASKS Selection of this option produces a snapshot of the
state of all the tasks in the system as shown below.
The snapshot contains four columns of information:
• Task Number

• Task Name

• Task Priority

• Task State

Task Number The task number is the numerical equivalent of the
task's name.

Task Name The task name shows the symbol associated with the
task number as defined during the configuration
process.

Task Priority The priority column shows the task's current
priority.

Task State The task state column shows the current state of the
task and some related information. For instance, if a
task is blocked, the state column shows the cause of
the blockage. The possible state conditions are:

• INACTIVE - The task has not been executed.

• READY - The task is active and is in the
READY List. A minus sign in front
(-READY) indicates that the task is Ready but is
being blocked by RTXCbug.
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• DELAY - The task is delayed for a period of
time. The amount of time remaining in the delay
period is shown adjacent to the task state.

• SUSPENDED - The task is suspended.

• Semaphore - The task is waiting on one or
more events using semaphore whose name(s)
appear(s) adjacently. If the event is associated
with a timeout, the amount of time remaining is
shown adjacent to the semaphore name.

• QueueEmpty - The task is waiting because a
queue is Empty. The name of the queue is shown
adjacent to the task state. If the task is in a time
limited wait, the amount of time remaining in the
timeout period is shown adjacent to the queue
name.

• QueueFull - The task is waiting because a
queue is Full. The name of the queue is shown
adjacent to the task state. If the task is in a time
limited wait, the amount of time remaining in the
timeout period is shown adjacent to the queue
name.

• Mailbox - The task is waiting because a mailbox
is empty. The name of the mailbox is shown
adjacent to the task state. If the task is in a time
limited wait, the amount of time remaining in the
timeout period is shown adjacent to the mailbox
name.
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• Resource - The task is waiting because a
resource is Locked. The name of the resource is
shown adjacent to the task state. If the task is in
a time limited wait, the amount of time
remaining in the timeout period is shown
adjacent to the resource name.

• Partition - The task is waiting because a
Partition is empty. The name of the partition is
shown adjacent to the task state. If the task is in
a time limited wait, the amount of time
remaining in the timeout period is shown
adjacent to the partition name.
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A sample Task snapshot is shown below.

** Task Snapshot **
  #   Name    Priority  State
  1  RTXCBUG     1      READY
  2  PRTSC       9      -READY
  3  CONODRV     6      READY
  4  CONIDRV     5      READY
  5  HISTASK    12      INACTIVE
  6  COMODRV    10      QueueEmpty COMOQ
  7  CAL         8      Semaphore ONESEC <500 ms>
  8  DINP        8      Semaphore DINTSEMA SDINSEMA

In the example, tasks 1, 3, and 4 are active and in
the READY List reflecting RTXCbug's use of the
console input driver (CONIDRV) and the console
output driver (CONODRV). Task 2 is not used by
RTXCbug and, while ready to run, is blocked by
RTXCbug. The minus sign prefix on READY
indicates the task is blocked by RTXCbug.

Task 5 has not been started and is idle. Tasks 6, 7,
and 8 are waiting for certain events to occur. Task 6
waits for something to be put into the COM Output
Queue, COMOQ. Task 7 is waiting for a timer to
expire which has another 500 milliseconds to run.
The timed event is associated with semaphore
ONESEC. Task 8 is waiting for either one of two
events to occur. One is associated with the
semaphore DINTSEMA and the other with
semaphore SDINSEMA.
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QUEUES This command produces a snapshot of the queues in
the system as shown below. Seven columns are used
in the snapshot. The first two, queue number and
name, are self-explanatory.

Current Size
Maximum Depth

The columns for Current/Depth show the current
sizes of the queues and their maximum depths.

Worst Case
Usage

The column entitled "Worst" shows the worst case
usage, i.e., largest current size, of the queue.

Total Usage The "Count" column shows the total number of
entries that have been put (enqueued) into the
queue.

Waiters The "Waiters" column shows the name of the tasks,
if any, which are waiting on the queue.

The Queue snapshot appears as:

** Queue Snapshot **
  #   Name  Current/Depth   Worst   Count   Waiters
  1 CONIQ         0/   16       1      19
  2 CONOQ       108/ 1024     546    3413
  3 COMOQ         0/  128       0       0   COMODRV

If there are condition semaphores defined for a given
queue, they are shown adjacent to the column for
Waiter tasks. The code for the queue condition
associated with the semaphore is also displayed next
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to the semaphore name. The queue condition codes
are as follows:

• <E> Empty

• <F> Full

• <NE> Not Empty

• <NF> Not Full
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SEMAPHORES The four-column snapshot of the RTXC semaphores
is shown below. The first two columns give the
semaphore number and its symbolic name.

State Column three, labeled "State" shows one of the
three possible states in which a semaphore can exist:

• PEND - Pending (Not yet happened and no
waiter)

• WAIT - Waiting (Not yet happened and a task
is waiting for it)

• DONE - Done (Event has happened)

Waiters The last column shows the name of the tasks waiting
for the semaphores.

An example of the snapshot appears as:

** Semaphore Snapshot **
  #    Name      State    Waiter
  1  PRNSEMA     PEND
  2  PRTSCSEM    DONE
  3  COMISEMA    WAIT     COMIDRV
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RESOURCES RTXCbug produces a Resource Snapshot such as
that shown below when the R command is entered.
Six columns of status information are displayed. The
first two, resource number and name, need no
explanation.

Lock/Unlock
Cycles

The third column shows the total number of times
the given resource has been locked and unlocked.

Lock Conflicts The "Conflicts" column shows the number of times
there has been an attempt to lock the resource when
it was already locked by another user.

Owner The name of the task which is currently locked on
the resource is shown in the column entitled
"Owner".

Waiters The names of any tasks which are waiting to use the
resource are shown in the last column, "Waiters".

The Resource snapshot appears as:

** Resource Snapshot **
  #   Name    Count   Conflicts    Owner    Waiters
  1  PRNRES   36742       0
  2  DOSRES       1       1       PRTSCRN   FILMGR
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MEMORY
PARTITIONS

The Memory Partition Snapshot produced by the P
command is shown below. Eight columns of
information make up the snapshot. The memory
partition number and name are the first two
columns.

Current Available
Total Available

The next two columns are headed "Avail/Total" and
show the available number of blocks and the total
number of blocks in the map.

Worst Case Usage The column titled "Worst" show the worst case
usage of blocks in terms of the maximum number of
blocks allocated at any one time.

Total Usage The "Count" column shows the total number of
block allocations processed by RTXC.

Block Size The size of each block in the partition is shown in
the column entitled "Bytes".

Waiters The last column shows the name of any task waiting
on the availability of memory.

An example of a Partition snapshot appears below.

** Partition Snapshot **
 #  Name   Avail/Total  Worst Count  Bytes  Waiters
 1 PRTSCMAP    3/    4      1     0   2010
 2 AIMAP       0/   20     20   482     64  AINP
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MAILBOXES The Mailbox Snapshot produced by the M command
is shown below. Five columns of information make
up the snapshot. The mailbox number and name are
the first two columns.

Current Content The next column, headed "Current", shows the
number of messages currently in the mailbox.

Total Usage The column labeled "Count" displays the number of
messages sent to the mailbox.

Waiters The last column, "Waiters", shows the name of any
task waiting for messages to arrive at the mailbox.

A sample Mailbox Snapshot is shown below.

** Mailbox Snapshot **
  #    Name     Current    Count    Waiters
  1  FSRVMBOX         0    31472    FILESRVR
  2  PRNMSG           0     3720    PRNDRV
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CLOCK/TIMERS This command produces a display of the Clock
Snapshot such as that shown in the example below.
The five columns of the snapshot show all the
information about each active timer.

Time Remaining The first column, titled "Time Remaining", shows
the amount of time remaining on each active timer in
units of milliseconds.

Cyclic Value The "Cyclic Value" column contains a value if the
timer is cyclic in nature. The value shown defines the
cyclic period of the timer in milliseconds. A period
of 0 msec indicates a one-shot timer.

Task The "Task" column shows the name of the task
waiting for the timer to expire.

Timer Type
and Object

The fourth and fifth columns, "Timer Type" and
"Object" are associated. Timer Type shows the type
of timer being used while the Object column shows
the name of the associated object. The permissible
types are:

• Timer - A general purpose timer. A blank field
following the word "Timer" indicates no
semaphore is associated with the timer.

• Delay - A task delay

• Partition - A timeout on allocation from an
empty memory partition. The partition name
appears adjacently.
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• Semaphore - A timed wait for an event. The
name of the semaphore appears adjacently.

• QueueEmpty - A timed wait for data to be put
into an empty queue. The name of the queue is
shown also.

• QueueFull - A timed wait for data to be
removed from a full queue. The name of the
queue is shown also.

• Resource - A timed wait before gaining
ownership of a currently locked resource. The
name of the resource is also shown.

• Mailbox - A timed wait for mail to arrive at an
empty mailbox. The name of the mailbox is
shown adjacently.

In addition to the columnar information about the
timers, there is some general information about the
clock. Specifically, its rate in Hertz, its time
granularity expressed as a tick interval in msec., and
the maximum number of timers in the system are
shown also in the snapshot. Due to space limitations,
this general clock information is not shown in their
exact columnar locations.
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** Clock Snapshot **

Clock rate is xxxx Hz, Tick interval is xxx ms,
Maximum of xx timers. Tick timer is    37046,
ET is     126 ticks, RTC time is    486

   Time       Cyclic     Task       Timer    Object
Remaining     Value      Name       Type      Name
   500        1000       CAL       Timer    CALSEMA

The Tick timer shown in the example above
represents the number of Ticks since the system was
started. The term ET is the number of Ticks which
have elapsed since the last entry into RTXCbug.
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STACK LIMITS This function is intended to assist the user in tuning
the use of RAM needed for stack space by tasks as
well as by RTXC. The snapshot, as shown in the
example below, consists of five columns.

Task Number
Task Name

The first two columns are used to identify the task
number and name.

Stack Size The third column shows the "Size" of the stack, in
bytes, as allocated during the system generation
procedure.

Used The fourth column shows how much of that
allocated stack has been used during the course of
operation.

Spare The fifth column shows how much of that allocated
stack has been unused during the course of
operation. (Size = Used + Spare)



  RTXCbug DEBUGGING TOOL RTXC User's Manual

  8-20 Copyright  Embedded System Products, Inc.

The stack snapshot appears as:

** Stack Snapshot **

  #    Task     Size    Used    Spare
  1  RTXCBUG     768     610      158
  2  PRTSC       512     124      388
  3  CONODRV     512     250      262

RTXC Kernel      256      68      188
Worst case interrupt nesting = 3
Worst case Signal List Size = 2

The snapshot also shows the usage of the RTXC
system stack(when supported) under the same
columns (Size, Used, and Spare) as for the task
stacks. The worst case levels of interrupt nesting and
ISR semaphore signalling are also shown.
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ZERO QUEUE/
PARTITION/
RESOURCE
STATISTICS

This command will cause all of the usage statistics
for queues, memory partitions, mailboxes, and
resources to be reset. The worst case levels for
interrupt nesting depth and ISR semaphore
signalling are also reset. No other user input is
required.
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$ - TASK
MANAGER
MODE

Task Manager Mode allows the user to do some
types of task management operations via the debug
console. Selection of this command causes a special
prompt to indicate that RTXCbug is in Task
Manager Mode. The prompt appears as:

$RTXCbug>

The Task Manager Mode menu may be displayed by
responding to the prompt with an "H" (or "h")
followed by an Enter (<cr>) key. The Task Manager
Mode menu is shown below.

S - Suspend
R - Resume
T - Terminate
E - Execute
C - Change task priority
B - Block (-1=All)
U - Unblock (-1=All)
/ - Time slice
H - Help
X - Exit Task Manager Mode

Except for the Exit (X) command, all of the
commands in the Task Manager Mode require that a
task number or name be entered. The task identifier
prompt appears as:
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Task>

The user's response to the prompt is a decimal task
number or the task's symbolic identifier as defined
during the system generation procedure. The entry is
terminated by an Enter (<cr>) key.

Suspend Execution of this command causes the specified task
to be suspended. The task cannot be restarted until it
is resumed by another task or by operator command
via RTXCbug.

Resume This command removes the state of suspension on
the specified task. If no other blocking condition
exists, the task is made ready to run.

Terminate This command causes the specified task to cease
operation. All active timers associated with the task
are purged.

Execute A task may be started by the selection of this
command. The specified task is started at the entry
point specified during the system generation
procedure.

Change task
priority

The priority of the specified task is changed by the
selection of this command with immediate effect.

Block A task may be blocked by the selection of this
command. If the special task identifier of -1 is given,
it causes all tasks to be blocked with the exception
of RTXCbug and its supporting input and output
tasks.
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Unblock This command is used to remove the blocking
condition set by the RTXCbug Block command on a
specific task. The task identifier is entered in the
same manner as on the Block command. The special
task identifier of -1 also applies to the unblock
command.

Time slice This command is used to define the time slice time
quantum for a specified task. A time quantum value
greater than zero enables time slicing and a value of
0 disables it.

Help This command causes the RTXCbug Command
Menu to be displayed.

Exit Task
Manager Mode

This command causes the Task Manager Mode to
terminate and to return to RTXCbug snapshot
mode. The standard RTXCbug command prompt is
reissued.
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# - TASK
REGISTERS

This command displays the processor register
context for a given task. You must enter the desired
task number in response to a query from RTXCbug.

Task>

Enter the task number and terminate the entry by
pressing the Enter (<cr>) key. RTXCbug will
immediately display the register context for the
indicated task. The display format of the registers is
processor dependent.

GO TO
MULTITASKING
MODE

When you have finished your session with RTXCbug
and you wish to resume normal system operations,
select this menu option.
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HELP To display the RTXCbug Command Menu, select
this option. The Command Menu appears as:

T - Tasks
M - Mailboxes
P - Partitions
Q - Queues
R - Resources
S - Semaphores
C - Clock/Timers
K - Stack Limits
Z - Zero Partition/Queue/Resource Statistics
$ - Enter Task Manager Mode
# - Task Registers
G - Go to Multitasking Mode
H - Help
U - Return to Main Menu
X - Exit RTXCbug

RETURN TO MAIN
MENU

If you wish to return to the RTXCbug main menu,
select this option.

EXIT RTXCbug If you wish to terminate RTXC operations, select
this option from the Command Menu. If your
RTXCbug terminal is a workstation with an
operating system, selecting this option will cause the
return to that environment. For a system without an
operating system, this option is the same as the "G"
option.
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SECTION 9

APPLICATION NOTES

_____________________________________

INTERTASK
COMMUNICATION
USING MESSAGES

Messages allow a very efficient means of passing
information between two tasks either synchronously
or asynchronously. Rather than attempting to
describe some hypothetical use of messages, an
example of usage may be more useful and
informative. You will find below an example of two
tasks which use messages as a means of intertask
synchronization and communication. The code is
obviously edited to leave only the essentials of
message use.

As a brief synopsis of the tasks, smcsrv() is a
Stepper Motor Controller SeRVer handling multiple
steppers. It receives command messages from other
tasks to make a given stepper motor move to a
given position. Thus, smcsrv() is the receiver task.
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The task, motor1(), is a sender task which sends a
command message to smcsrv().

In the example, the breakdown by line number range
is as follows:

001-024 Commentary and file includes.

025-065 Message structures. These are for
example and their content does not
reflect a mandatory method for the
organization of a structure to be used
for an RTXC message.

066-072 More declarations.

073-110 Task smcsrv().

113-164 Task motor1().
/*****************************************************************************/1

/*  SMCSRV.C                                                                 */2

/*                                                                           */3

/*  This is an excerpt from a stepper motor driver system. There are a few   */4

/*  undefined symbols such as IDLE etc. but they are unimportant to the      */5

/*  example. This is a task which receives a stepper motor command and then  */6

/*  processes that command. How it does it is not important to the example.  */7

/*  This is primarily intended as an example of how messages are used.       */8

/*****************************************************************************/9

10

#include "rtxcapi.h"11

#include "csema.h"12

#include "ctask.h"13

#include "cclock.h"14

#include "cmbox.h"15

16

    /**************************/17
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    /*       STRUCTURES       */18

    /**************************/19

20

/* Here is a message structure for a stepper motor command sent by some task */21

/* to the stepper motor server task, smcsrv(). What the various parts of the */22

/* structure are and how they are used is beyond the scope of this example.  */23

24

typedef struct smcmsg              /*  Stepper motor control message         */25

     {26

        RTXCMSG  hdr;                        /* header message               */27

        char    motor_num;                   /* stepper motor number         */28

        char    command;                     /* motor command                */29

        char    pos_num;                     /* position number              */30

        char    comp_code;                   /* completion code*/31

        char    n_params;                    /* number of parameters to send*/32

        char    filler;33

        struct34

             {35

                 char  param_code;           /* stepper motor command code   */36

                 char  c_count;37

                 int   par_val;              /* number of steps to move      */38

             } pval[7];39

     } SMCMSG;40

41

/* The following structure is a block of information used by each stepper    */42

/* motor while it is in operation. The stepper motor server task and the     */43

/* stepper motor driver task (not part of this example) use these tables to  */44

/* maintain control over the motors as each can be in a different state than */45

/* the others. Multiple commands can be sent to a single motor and linked via*/46

/* the two link pointers, cptr and lptr. */47

48

typedef struct                     /* Stepper motor control block            */49

     {50
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        char      status;                    /* status                       */51

        SMCMSG    *cptr;                     /* current pointer              */52

        SMCMSG    *lptr;                     /* last pointer                 */53

        POS_ARAY  pos_aray;                  /* position array               */54

        char      n_posn;                    /* number of positions          */55

        char      cur_posn;                  /* current position             */56

        char      card_drv;                  /* card driver                  */57

        char      flag_dno;                  /* flag device number           */58

        char      rate;                      /* motor rate (fast rate)       */59

        char      slope;                     /* motor slope                  */60

        char      slp_dvz;                   /* motor slope divisor (accel.) */61

        char      jumprate;                  /* motor jumprate (slow rate)   */62

        char      direct;                    /* motor direction towards home */63

     } SMCBLK;64

65

#define NUMMOTOR 466

67

extern  SMCBLK mcb[NUMMOTOR];      /* these are motor control blocks used to */68

                                   /* hold information about each motor as it*/69

                                   /* is being used. All motors are able to  */70

                                   /* operate independently.                 */71

72

/*****************************************************************************/73

void smcsrv(void)74

{75

    int     i;76

    SMCMSG  *mptr;                 /* see headers.h for definition of SMCMSG */77

78

    /* Do any initialization prior to the start of the "forever" loop   */79

    for(;;)80

    {81

        /* first function is to receive the message, or rather a pointer     */82

        /* to the message. The next available message is received since the  */83
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        /* task argument to KS_receive() is 0.  */84

85

        mptr = (SMCMSG *)KS_receivew(SMCMBOX,(TASK)0); /* get next command   */86

        i = mptr->motor_num;                       /* get motor # as index   */87

        if ((mcb[i].status & SMASK) == IDLE)88

        {                                          /* if IDLE, then ...      */89

            mcb[i].cptr = mptr;                    /* set up current pointer */90

            mcb[i].lptr = mptr;                    /* set last current ptr   */91

            mcb[i].status = (mcb[i].status &(~SMASK)) + READY;92

            ...93

            /* more processing */94

            ...95

        }96

        else97

        {98

            mcb[i].lptr->hdr.link = (RTXCMSG *)mptr;99

            mcb[i].lptr = mptr;100

        }101

        mcb[i].lptr->hdr.link = 0;                 /* Last Pointer = Null    */102

103

       /* now that the message has been processed, signal completion */104

105

       KS_ack((RTXCMSG *)mptr);106

107

    }108

}109

110

111

112

/****************************************************************************/113

/* MOTOR1.C  --  Example of a task which operates one stepper motor.        */114

/****************************************************************************/115

116
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#define POSone 1117

#define POStwo 2118

119

/****************************************************************************/120

void motor1(void)121

{122

    /* declare some different messages for stepper motor operations */123

    SMCMSG  pos1msg, pos2msg;124

125

    /* then fill in a few values */126

    pos1msg.pos_num = POSone;127

    pos1msg.motor_num = SM1;128

    pos1msg.command = 'M';129

130

    pos2msg.pos_num = POStwo;131

    pos2msg.motor_num = SM1;132

    pos2msg.command = 'M';133

    ...134

    /* processing */135

    ...136

    for(;;)137

    {138

    /* Send a message to the stepper motor server task, SMCDRV, but do not  */139

    /* wait for the completion of its processing. Continue with the task.   */140

141

        /* move SM1  to park  */142

        KS_send(SMCMBOX,(RTXCMSG *)&pos1msg,143

                (PRIORITY)3, SM1_DONE);144

        KS_delay((TASK)0, 50/CLKTICK);         /* delay for 50 milliseconds */145

        ...146

        /* processing */147

        ...148

        /* wait on the completion of the above message here.                */149
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        KS_wait(SM1_DONE);150

        ...151

        /* more processing */152

        ...153

    /* then send a stepper motor command to SMCSRV and wait on the completion*/154

    /* of the message processing before proceeding. The semaphore SM1_DONE is*/155

    /* used as the completion event flag. Notice the use of coercing the     */156

    /* address of the message to be of type RTXCMSG.*/157

158

        KS_sendw(SMCMBOX, (RTXCMSG *)&pos2msg, (PRIORITY)3, SM1_DONE);159

        ...160

        /* and still more processing */161

        ...162

    }163

}164
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SIGNALLING
MULTIPLE EVENTS
ON THE SAME
INTERRUPT

Hardware devices are often used which utilize one
interrupt for several events associated with the
device. This may be done to preserve interrupt lines
on an interrupt controller chip, or to simplify the
hardware and associated costs, or just because it
makes good design sense. Usually, there is some sort
of interrupt request status register which can be read
to determine the actual source of the interrupt. In
many of these implementations, it is possible for one
or more events to occur simultaneously. It is this
case which bears special attention.

In the situation where a single interrupt is associated
with two or more different events, some special
processing is required when writing the device
servicing function of the interrupt service routine.
Recall from Sections 3 and 7 that the ISR completes
its processing by calling the Common Interrupt
Service Routine Exit function, KS_ISRexit(). Recall
also that one of the arguments passed to
KS_ISRexit() may be the identifier of a semaphore
associated with the interrupt. The semaphore, if
specified, is passed to KS_ISRexit() so that it may be
signalled. This scenario is the normal case and is
well described in Sections 3 and 7. But when more
than one semaphore needs to be signalled when the
ISR is complete, some special techniques are
needed.

When signalling a semaphore, KS_ISRexit() places
its identifier into a list of semaphores, the Signal
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List. The content of the Signal List is processed
subsequent to some status checks. It is possible and
permissible to make insertions into the Signal List
from outside of KS_ISRexit(). For instance, an ISR
may need to signal other semaphores besides the one
it passes to KS_ISRexit() as an argument. RTXC
provides for this requirement with the special
function KS_ISRsignal(). The function requires the
identifier of the semaphore that is to be signalled.

RTXC provides a global pointer to the semaphore
Signal List, siglist, to permit such usage.
KS_ISRsignal() consists of three steps. First, it
disables interrupts. Secondly, it appends one
semaphore identifier to siglist. Lastly, it enables
interrupts. The inline code could be substituted for
KS_ISRsignal() with equivalent results.

When there are two or more semaphores to signal,
you have two options to accomplish the feat. First,
call KS_ISRsignal() to signal one while still in the
ISR and then call KS_ISRexit() with the second.
Alternatively, you could signal both by calling
KS_ISRsignal() twice, once for each semaphore, and
end the ISR by calling KS_ISRexit() without passing
a semaphore identifier.

Take, for example, the ISR for a UART driver. In it,
one interrupt is used for both the INPUT_READY
and OUTPUT_DONE events. A status register can
be interrogated to determine the source of the
UART interrupt. Since the input and output ports on
the UART are asynchronous, it is possible for both
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interrupts to occur simultaneously. When such an
event occurs, the two semaphores, INPUT_SEMA
and OUTPUT_SEMA, need to be signalled. A code
example from a UART driver illustrates the first
method.

/*1

 * Interrupt service for input and output ports on a single UART2

 *3

 * Note, in some UARTS more than one interrupt may be pending at the same4

 * time (i.e. TX done, RX ready).  KS_ISRexit() only allows for signaling a5

 * single semaphore per interrupt.  In order to signal multiple semaphores,6

 * KS_ISRsignal() must be called to signal any other7

 * semaphore(s) associated with the event.8

*/9

10

/* C level CONsole interrupt handler */11

FRAME *uartc(FRAME *frame)12

{13

   char inchar;14

   extern SEMA *semaput;15

16

   if (USART_STATUS == RX_DATA_READY)       /* test source of the interrupt */17

   {                                        /* INPUT READY */18

      inchar = read_char();                 /* read char and save */19

      if (USART_STATUS == TX_BUFF_EMPTY)    /* test output port's status */20

      {                                     /* OUTPUT DONE */21

         KS_ISRsignal(OUTPUT_DONE_SEMA);    /* add semaphore to list */22

      }23

24

      /* put clear interrupt logic here if necessary */25

26

      /* exit and signal char input semaphore */27

      return(KS_ISRexit(frame, CONISEMA));28
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   }29

30

   if (USART_STATUS == TX_BUFF_EMPTY)       /* test source of interrupt */31

   {                                        /* OUTPUT DONE */32

      if (USART_STATUS == RX_DATA_READY)    /* test input port's statuS */33

      {                                     /* INPUT READY */34

         inchar = read_char();              /* read char and save */35

         KS_ISRsignal(INPUT_DONE_SEMA);     /* signal char input semaphore */36

      }37

38

      /* put clear interrupt logic here if necessary */39

40

      /* exit and signal char output semaphore */41

      return(KS_ISRexit(frame, CONOSEMA));42

   }43

   return(KS_ISRexit(frame,0))              /* neither device interrupted */44

}45
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KS_inqtimer, 5-116
KS_ISRalloc, 5-118
KS_ISRexit, 5-120
KS_ISRsignal, 5-122
KS_ISRtick, 5-124
KS_lock, 5-126
KS_lockt, 5-128
KS_lockw, 5-132
KS_nop, 5-134
KS_pend, 5-136
KS_pendm, 5-138
KS_purgequeue, 5-140
KS_receive, 5-142
KS_receivet, 5-144
KS_receivew, 5-148
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KS_restart_timer, 5-150
KS_resume, 5-152
KS_send, 5-154
KS_sendt, 5-156
KS_sendw, 5-160
KS_signal, 5-162
KS_signalm, 5-164
KS_start_timer, 5-166
KS_stop_timer, 5-170
KS_suspend, 5-174
KS_terminate, 5-176
KS_unblock, 5-178
KS_unlock, 5-180
KS_user, 5-182
KS_wait, 5-184
KS_waitm, 5-186
KS_waitt, 5-188
KS_yield, 5-192

upon completion, 2-24
with timeout, 2-32

KS_ack, 3-44, 5-14, 5-24
KS_alloc, 3-78, 3-79, 3-80, 5-20, 5-26
KS_alloc_part, 3-74, 5-20, 5-28
KS_alloc_task, 3-5, 3-15, 5-8, 5-30
KS_alloc_timeout, 3-90
KS_alloc_timer, 3-86, 5-18, 5-32
KS_alloct, 3-78, 3-80, 5-20, 5-34
KS_allocw, 3-78, 3-80, 5-20, 5-38
KS_block, 5-8, 5-40
KS_create_part, 3-74, 5-20, 5-42
KS_defmboxsema, 3-28, 3-29, 5-12
KS_defpart, 3-73, 3-74, 5-21
KS_defpriority, 5-8
KS_defqsema, 3-56, 3-57, 3-59, 5-12
KS_defqueue, 5-15
KS_defres, 3-68, 5-17
KS_defslice, 5-8
KS_deftask, 3-5, 3-12, 3-15, 5-8
KS_deftask_arg, 3-13, 5-8
KS_deftask_args, 3-15
KS_deftime, 5-22

KS_delay, 5-9
KS_dequeue, 3-50, 3-51, 5-15
KS_dequeuet, 3-50, 3-51, 3-52, 5-15
KS_dequeuew, 3-50, 3-51, 3-52, 4-16, 5-15
KS_elapse, 5-18
KS_enqueue, 3-49, 3-50, 5-15
KS_enqueuet, 3-49, 3-50, 3-51, 5-15
KS_enqueuew, 3-49, 3-50, 5-16
KS_execute, 3-4, 3-5, 3-7, 3-14, 3-15, 5-9
KS_free, 3-78, 3-79, 3-81, 5-21
KS_free_part, 3-75, 5-21
KS_free_timeout, 3-91
KS_free_timer, 3-89, 5-18
KS_inqmap, 5-21
KS_inqpriority, 5-9
KS_inqqueue, 5-16
KS_inqres, 5-17
KS_inqsema, 5-12
KS_inqslice, 5-9
KS_inqtask, 5-9
KS_inqtask_arg, 3-14, 5-9
KS_inqtime, 5-22
KS_inqtimer, 3-89, 5-18
KS_ISRalloc, 3-78, 3-80, 3-80, 5-11, 5-118
KS_ISRexit, 5-11
KS_ISRsignal, 5-11
KS_ISRtick, 5-11
KS_lock, 3-65, 3-69, 3-70, 5-17
KS_lockt, 3-66, 3-69, 3-71, 5-17
KS_lockw, 3-65, 3-66, 3-69, 5-17
KS_nop, 5-22
KS_pend, 3-26, 5-12
KS_pendm, 3-26, 5-13
KS_purgequeue, 3-59, 5-16
KS_receive, 3-30, 3-39, 3-40, 5-14
KS_receivet, 3-39, 3-42, 5-14
KS_receivew, 3-39, 3-41, 3-42, 5-14
KS_restart_timer, 3-89, 5-18
KS_resume, 5-9
KS_send, 3-35, 3-37, 3-44, 5-14
KS_sendt, 3-37, 3-38, 3-44, 5-14



RTXC User's Manual INDEX

Copyright  Embedded System Products, Inc. v

KS_sendw, 3-37, 3-38, 3-44, 5-14
KS_signal, 3-24, 5-13
KS_signalm, 3-24, 5-13
KS_start_timer, 3-87, 3-88, 5-18
KS_stop_timer, 3-89, 5-19
KS_suspend, 5-9
KS_terminate, 3-7, 3-17, 5-10
KS_unblock, 5-10
KS_unlock, 3-65, 3-66, 3-69, 5-17
KS_user, 5-22
KS_wait, 3-23, 3-24, 3-35, 3-37, 3-44, 4-17, 5-

13
KS_waitm, 3-23, 3-29, 3-30, 3-53, 3-54, 3-55,

5-13
KS_waitt, 3-23, 5-13
KS_yield, 3-69, 5-10

—M—
Mailbox, 1-14

message interface, 2-27
multiple producers, 2-27
receiver, 2-28

Mailboxes
definition, 3-27
description, 3-27
organization, 3-28
references, 3-27
rules, 2-28
semaphore

multiple events, 3-29
usage, 3-29

Make Files, 4-4
Map, 3-72
Memory Management

fragmentation, 2-35
partitions

block allocation, 2-35
blocks, 2-35
freeing blocks, 2-35
organization, 2-35

rules, 2-36
Memory Partitions

attributes
block size, 3-72, 3-73
identifier, 3-77
number of blocks, 3-73

description, 3-72 to 3-81
dynamic model

predefinition, 3-74
fragmentation, 3-72
freeing memory, 3-78, 3-81
initialization, 3-78
memory allocation, 3-72, 3-78, 3-79
multiple partitions, 3-72
static model

predefinition, 3-73
structure, 3-76
timeout, 3-80
waiters, 3-80

Message, 1-14
Message Body, 1-14
Message Envelope, 1-14
Message Priority, 1-15
Messages

acknowledgment
semaphore signaling, 3-44

asynchronous
acknowledgement of, 2-31
bi-directional data movement, 2-31
no waiting, 2-31
semaphore, 2-31
wait for completion, 2-31

bi-directional data movement, 2-30, 3-45
body, 3-32
content, 3-33
description, 3-32 to 3-45
difference from queues, 2-28
envelope, 3-32
fixed priority, 3-33
format of, 2-29
from particular sender, 3-32
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parts of, 2-29
priority, 2-29, 3-28, 3-32, 3-33
receiver, 3-32
receiving

conditional with timeout, 3-42
empty mailbox, 3-39
mailbox polling, 3-40
unconditional, 3-41

responses. See Messages, bi-directional
data movement

rules, 2-29
sender, 3-32
sending

asynchronous
no waiting, 3-35
to waiting receiver, 3-35
wait for acknowledgment, 3-35

synchronization with receiver, 3-44
synchronous

automatic wait, 3-37
synchronous conditional

acknowledgment, 3-38
automatic wait, 3-38
timeout, 3-38

structure, 3-32
synchronous

acknowledgement of, 2-30, 2-30
automatic wait, 2-29
receiver, 2-30
semaphore, 2-29

types, 2-29
Microcontroller, 1-15
Microprocessor, 1-15
Multitasking

effect of concurrency, 2-8
history, 2-8
rules, 2-8
task scheduling, 2-16
task stacks, 3-12
task switching, 2-8
use of interrupts, 7-3

—N—
NMBOXES, 3-27
NTASKS, 3-9
Null Task

priority of, 3-10
rules, 2-6, 2-11

—P—
Partition, 1-15
Priority

as task attribute, 3-10
numbering, 3-10
role in preemption, 2-5, 2-13
shared, 3-15

Protocols
task scheduling, 2-16

—Q—
QE. See Queue semaphore states
QF. See Queue semaphore states
QNE. See Queue semaphore states
QNF. See Queue semaphore states
Queue, 1-15
Queues

data entry
conditions, 2-27
data movement, 2-27
data ordering, 2-27

data removal
conditions, 2-27
data movement, 2-27

depth, 3-48
description, 3-46 to 3-61
FIFO model, 3-46
identifiers, 3-47
multiple consumers, 3-46
multiple producers, 3-46
operations
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dequeueing, 3-50 to 3-52
enqueueing, 3-49 to 3-50
timeouts, 3-50, 3-51

purging, 3-59
rules, 2-26, 2-27
semaphores

definition of, 3-56
states

Queue_Empty, 3-55
Queue_Full, 3-56
Queue_not_Empty, 3-16, 3-55, 3-57,

3-61
Queue_not_Full, 3-16, 3-56

states
Empty, 3-48, 3-50, 3-51, 3-52, 3-56, 3-

57
Full, 3-48, 3-49, 3-51, 3-51, 3-52, 3-56,

3-59
not_Empty_not_Full, 3-48, 3-50, 3-51,

3-55, 3-56, 3-57, 3-58, 3-59
structure

body, 3-47
header, 3-47

synchronization
semaphores, 3-55

task synchronization
multiple events, 3-53
waiter list, 3-52
waiting task, 3-52

width, 3-48

—R—
RAM, 1-15
READY List, 1-15, 2-9

highest priority task, 2-9
insertion into, 3-16
linkage, 2-9
priority order, 2-9, 3-15
removal from, 3-15, 3-16
rules, 2-9

Real-Time Kernel
policies, 2-1
rules, 2-1
serving tasks, 3-3
stack, 3-12

Real-Time Systems
composition of, 2-12

Resources, 1-16
association with entities, 3-62
description, 3-62 to 3-71
entity protection, 3-62
locking, 3-62
nested locks, 3-65
ownership, 3-64
priority inversion attribute, 3-68
priority inversion, 3-67 to 3-71
states

free, 3-64, 3-65
locked, 3-63, 3-64, 3-65, 3-66

structure, 3-63
timeouts, 3-66
unlocking, 3-63
waiters, 3-64

ROM, 1-16
Round Robin

example, 2-17
method, 2-16
priority, 2-17
rules, 2-17, 2-18
sequential task execution, 2-19
yielding CPU control, 2-17

RTXC
Background, 1-1
basic rules, 2-5, 2-6, 2-17
binding manual, 4-3
Concepts, 1-1
confidence test, 4-4
configuration options, 4-10
coprocessor support, 7-15
Distribution form, 1-6
Features, 1-3
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installing, 4-2
interruptions, 2-5
Library Configurations, 1-7

Advanced Library, 1-7
Basic Library, 1-7
Extended Library, 1-7

multitasking, 2-10
Philosophy, i
policies, 2-3, 2-4
system resources, 2-7
Target Environment, 1-11
task scheduler, 2-10, 3-7, 3-15

RTXCbug
command options

#-task registers, 8-25
$-task manager mode, 8-22

menu, 8-22
clock/timers, 8-16

snapshot, 8-18
help, 8-26
mailboxes, 8-15

snapshot, 8-15
memory partitions, 8-14

snapshot, 8-14
menu, 8-5
multitasking, 8-25
queues, 8-10

snapshot, 8-10
resources, 8-13

snapshot, 8-13
semaphores, 8-12

snapshot, 8-12
stack limits, 8-19

snapshot, 8-20
tasks, 8-6

snapshot, 8-9
zero queue/map/stats, 8-21

entering, 8-3
exit to monitor, 8-26
priority of, 8-1
return to main menu, 8-26

RTXCgen
definition editor

menu, 6-19, 6-20
definition editor options

add new object, 6-20
change or view object, 6-20
delete object, 6-20
exit, 6-22
help, 6-22
insert new object, 6-20
move object, 6-21
swap object positions, 6-21
view set of objects, 6-21

definition files
cclock.def, 4-12, 6-12
cmbox.def, 4-12, 6-12
cpart.def, 4-12, 6-12
cqueue.def, 4-12, 6-12
cres.def, 4-12, 6-12
csema.def, 4-12, 6-12
ctask.def, 4-12, 6-12
naming conventions, 6-12

definition modules
clocks

clock rate, 6-34
number of timers, 6-34

descriptions, 6-24
mailboxes

description, 6-33
name, 6-33

memory partitions
count, 6-32
description, 6-32
name, 6-32
size, 6-32

naming conventions, 6-23
numbering conventions, 6-24
queues

depth, 6-30
description, 6-30
name, 6-30
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width, 6-30
resources

description, 6-29
name, 6-29

semaphores
description, 6-28
name, 6-28

task
description, 6-27
entry point, 6-26
extended context, 6-27
name, 6-25
priority, 6-25
stack size, 6-26
starting order, 6-26

description, 6-5 to 6-34
DNTASKS, 3-9
free timer pool, 3-83
header files, 6-15

cmbox.h, 6-7
content, 6-5
csema.h, 6-5

input, 6-5
mailboxes, 3-27
main menu and operation, 6-8
main menu options

exit, 6-9
help, 6-9
RTXC, 6-8, 6-8

memory partitions, 3-72, 3-73
NTASKS, 3-6, 3-9
object definition module menu, 6-13
object definition options

edit, 6-14
exit, 6-18
force, 6-17
generate, 6-15
help, 6-18
keep, 6-15
load, 6-14
print, 6-17

view, 6-14
operating environment, 6-5
queues, 3-47
resources, 3-62, 3-63
RTXC menu and operation, 6-10
RTXC menu options

exit, 6-11
help, 6-11

semaphores, 3-20
source code output, 6-5, 6-15
task control blocks, 3-6
tasks, 3-4, 3-12
usage, 6-7 to 6-34

—S—
Semaphore, 1-16
Semaphores

content, 2-14, 3-19
definition

identifier, 3-20
description, 3-19 to 3-26
errors, 2-15
event association, 3-23
event waiting, 3-23
identifiers, 3-20
relationship, 3-23
rules, 2-14, 2-15
signal list, 9-9
signaling, 3-19
signaling, 3-24 to 3-25
signalling multiple events, 9-8
state transitions, 3-21
states

DONE, 3-21, 3-24, 3-25, 3-29, 3-56, 3-
58, 3-59

forcing to PENDING, 3-26
PENDING, 3-21, 3-23, 3-24, 3-25, 3-26,

3-29, 3-30, 3-56, 3-57, 3-59
WAITING, 3-21, 3-23, 3-24, 3-25, 3-29,

3-57
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use in synchronization, 3-19
Signal, 1-16
Singly Linked List, 1-16, 2-35, 3-28
Stacks

types of
system, 7-5
task, 7-5

Startup Code, 4-10
System Generation

concepts, 6-1
kernel objects predefinition, 6-3
static configuration, 6-3

System Time
conversion

from calendar date, 3-92
to calendar date, 3-93

date, 3-92
description, 3-92 to 3-94
time-of-day, 3-92

—T—
Task, 1-16
Task Control Block, 1-17
Task Control Blocks

allocation of, 3-15
as task attribute, 3-11

Task Dispatcher. See RTXC Task Scheduler
Task Number, 1-17
Task Priority, 1-17
Task Scheduling

multitasking, 2-16
protocols, 2-16

preemptive, 2-16, 2-23
round robin, 2-16
time-sliced, 2-16

Tasks, 3-16
attributes

entry point, 3-11
environment arguments, 3-11, 3-13
extended context, 3-13

priority, 3-9
processor context, 3-13
stack, 3-11, 3-12
task control blocks, 3-11
task identifier, 3-9

blockage, 2-25, 2-30
code models

forever loop, 3-8
once only, 3-7

description, 3-3
dynamic model

allocation of TCB, 3-5
attribute definition, 3-5
creation, 3-5
execution of, 3-14
task identifier, 3-9

execution of, 2-25, 3-10, 3-14
I/O or compute bound, 2-13
in multitasking, 2-12
number of

DNTASKS, 3-9
dynamic, 3-6
NTASKS, 3-9
static, 3-6

organization
C function, 3-7

preemption, 2-13
purpose of, 2-10
stacks

dynamic, 3-12
size of, 3-12
static, 3-12

starting sequence, 3-4
states

BLOCK_WAIT, 3-16
blocked, 3-16
DELAY_WAIT, 3-17
INACTIVE, 3-16
MSG_WAIT, 3-16
numerical value, 3-11
PARTITION_WAIT, 3-17
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QUEUE_WAIT, 3-16
RESOURCE_WAIT, �-17
runnable, 3-16
SEMAPHORE_WAIT, 3-16, 3-23, 3-25,

3-44
SUSPFLG, 3-17

static model
allocation of TCB, 3-4
execution of, 3-14
predefinition, 3-4

termination, 3-17
type of

dynamic, 3-3
static, 3-3

TCB. See Task Control Blocks. See Task
Control Block

Threaded List, 1-17
Timers

active timer list, 3-82
clock interrupt frequency, 3-82
cyclic, 3-83
description, 3-82 to 3-91
general

allocation by task, 3-85
automatic allocation, 3-86
freeing, 3-89
stopping and restarting, 3-89
time remaining, 3-89

interrupts, 3-91
one-shot, 3-83
semaphore, 3-84
structure, 3-83
TICKS, 3-84
timeout

allocation of, 3-90
freeing, 3-91

types
general timers, 3-82
timeout timers, 3-82

Time-Slicing
enabling and disabling, 2-22

forced yield, 2-19
mixed with round-robin, 2-20
rules, 2-20, 2-21
time quantum

preservation of remaining time, 2-21
tuning, 2-23
upon expiration, 2-21
when activated, 2-21

usage, 2-22
Timing

clock ticks, 2-32
management of, 2-32
purposes

elapsed time counting, 2-32
general, 2-32
timeout, 2-32

rules, 2-33
timer devices, 2-33
timer ticks, 2-33

—U—
User Utilities

date2systime, 3-92
systime2date, 3-92, 3-93

—W—
Waiter, 1-17


